CONTENTS

Front Matter

Title Page, Preface and Acknowledgements
About the Author
Status, History, Issues and Updates
Complementary Textbooks
Teaching Notes and Resources
A Note about Numerical Solutions

Course Units

I. Chemical Reactions
1. Stoichiometry and Reaction Progress
2. Reaction Thermochemistry
3. Reaction Equilibrium
II. Chemical Reaction Kinetics
A. Rate Expressions
4. Reaction Rates and Temperature Effects
5. Empirical and Theoretical Rate Expressions
6. Reaction Mechanisms
7. The Steady State Approximation
8. Rate-Determining Step
9. Homogeneous and Enzymatic Catalysis
10. Heterogeneous Catalysis
B. Kinetics Experiments
11. Laboratory Reactors
12. Performing Kinetics Experiments
C. Analysis of Kinetics Data
13. CSTR Data Analysis
14. Differential Data Analysis
15. Integral Data Analysis
16. Numerical Data Analysis
III. Chemical Reaction Engineering
A. Ideal Reactors
17. Reactor Models and Reaction Types
B. Perfectly Mixed Batch Reactors
18. Reaction Engineering of Batch Reactors
19. Analysis of Batch Reactors
20. Optimization of Batch Reactor Processes
C. Continuous Flow Stirred Tank Reactors
21. Reaction Engineering of CSTRs
22. Analysis of Steady State CSTRs
23. Analysis of Transient CSTRs
24. Multiple Steady States in CSTRs
D. Plug Flow Reactors
25. Reaction Engineering of PFRs
26. Analysis of Steady State PFRs
27. Analysis of Transient PFRs
E. Matching Reactors to Reactions
28. Choosing a Reactor Type
29. Multiple Reactor Networks
30. Thermal Back-Mixing in a PFR
31. Back-Mixing in a PFR via Recycle
32. Ideal Semi-Batch Reactors
IV. Non-Ideal Reactions and Reactors
A. Alternatives to the Ideal Reactor Models
33. Axial Dispersion Model
34. 2-D and 3-D Tubular Reactor Models
35. Zoned Reactor Models
36. Segregated Flow Models
37. Overview of Multi-Phase Reactors
B. Coupled Chemical and Physical Kinetics
38. Heterogeneous Catalytic Reactions
39. Gas-Liquid Reactions
40. Gas-Solid Reactions

Supplemental Units

S1. Identifying Independent Reactions
S2. Solving Non-differential Equations
S3. Fitting Linear Models to Data
S4. Numerically Fitting Models to Data
S5. Solving Initial Value Differential Equations
S6. Solving Boundary Value Differential Equations

Unit 16. Numerical Data Analysis

This website provides learning and teaching tools for a first course on kinetics and reaction engineering. The course is divided into four parts (I through IV). Here, in Part II of the course, the focus is on chemical reaction kinetics, and more specifically, on rate expressions, which are mathematical models of reaction rates. As you progress through Part II, you will learn how rate expressions are generated from experimental kinetics data.

Part II of the course concludes with Section C which describes how to test a rate expression (Section A) using experimental data (Section B). The testing of a rate expression entails its substitution into the model for the experimental reactor and the subsequent fitting of that model to the experimental data. The end result will reveal whether the selected rate expression offers a sufficiently accurate representation of the rate of the reaction under consideration. If it does, the fitting process also will yield the best values for the parameters that appear in the selected rate expression.

In Units 13 through 15 the models for the kinetics experiments were linearized, after which they were fit to experimental data using linear least squares. Unit 16 shows how non-linear models for kinetics experiments can be fit to experimental data without linearizing them. It also describes how to fit models that involve differential equations without first analytically solving them to obtain an algebraic model equation. Instead, the differential equations are solved numerically at the same time the model is being fit to the data. Finally, Unit 16 presents an introduction to the analysis of kinetics data where more than one chemical reaction is taking place.

Learning Resources

Teaching Resources

Practice Problems

1. Repeat any problem from Unit 13, 14 or 15 using numerical least squares for the data analysis.