A First Course on Kinetics and Reaction Engineering
 Activity 16.2

Problem Purpose

This example illustrates the analysis of kinetics data from a CSTR using numerical least squares The problem is the same as Example 13.3 which was solved using linear least squares.

Problem Statement

A new enzyme has been found for the dehydration reaction given in equation (1). A series of experiments were performed using a CSTR operating at steady-state and isothermally. The inlet flow rate was fixed at 5 mL per min and the reactor fluid volume was constant at 50 mL in all experiments. The inlet concentration of substrate, S , was changed for each experiment and the data given below for the product, P, concentration were recorded. Determine whether Michaelis-Menten kinetics adequately describe the rate of reaction, and if they do, determine the best values for the two kinetic parameters in the MichaelisMenten rate equation.

$$
\begin{equation*}
\mathrm{S} \rightarrow \mathrm{P}+\mathrm{H}_{2} \mathrm{O} \tag{1}
\end{equation*}
$$

Inlet \boldsymbol{s} Concentration $(\mathbf{m m o l / L})$	Outlet PConcentration $(\mathbf{m m o l / L})$
12.6	1.01
11.2	0.98
9.0	0.92
8.1	0.90
6.3	0.83
5.6	0.79
4.3	0.71
3.6	0.65
2.3	0.52
1.0	0.29

- Write mole balances for A, B and Z (to be solved numerically)
- What must be provided to the software used to solve the set of algebraic equations?
- For the code, what quantities will be known and what equations will used?
- Fit the model to the data using numerical least squares
- What must be provided to the software used to perform the numerical least squares?
- For the code, what quantities will be known and what equations will used?
- What is the result?

