
A First Course on Kinetics and Reaction Engineering

Example 16.2

Problem Purpose
This problem illustrates the analysis of multiple response kinetics data using numerical fitting.

Problem Statement
A batch reactor was used to study the dehydration of glucose using sulfuric acid as a catalyst. The

initial concentration of glucose, CG0, and the length of time that the reagents were allowed to react, t,
were set for each data point and the final concentrations of glucose (CG), HMF (CH) and levulinic acid

(CL) were measured. Determine whether the data can be described accurately by the first order reaction

network given in equations (1) through (3). If the network model is accurate, find the best values of the
three first order rate coefficients. The data are given in Table 1.

G → H (1)

H → L (2)

H → T (3)

Table 1. Data for Example 16.2.

CG0 (M) t (min) CG (M) CH (M) CL (M)

0.4809 36.0 0.4188 0.0063 0.0298

0.4809 143.0 0.2882 0.0046 0.1200

0.4809 296.0 0.2188 0.0027 0.1682

0.4809 561.0 0.0868 0.0011 0.2578

0.4725 25.0 0.4163 0.0067 0.0279

0.4725 185.0 0.2629 0.0043 0.1334

0.4725 335.5 0.1598 0.0021 0.2056

0.4725 462.0 0.1074 0.0014 0.2326

Problem Analysis
This problem provides data from a batch reactor; there are two set variables, the initial glucose

concentration and the reaction time and three response variables, the final concentrations of glucose,

HMF and levulinic acid. Three reactions occurred during the experiments; we are asked to test a kinetic
model where each of the three reactions is first order. Since the problem involves multiple response data,

AFCoKaRE, Example 16.2 1

least squares fitting cannot be used. However, the data set is complete (every response variable
measured for every experiment), so the equation (16.2) from the informational reading, reproduced here

as equation (4) can be used as the objective function to be minimized. The errors that appear in equation
(4) are defined in equation (5). This will be done numerically as described in Supplemental Unit S4. While

the initial value ordinary differential equations that make up the model could be solved analytically, here
they will be solved numerically. Finally, it should be noted that the data set here is quite small; this

problem will serve to illustrate the data analysis process, but in a real kinetics study, many more data
should be used.

Φ =

ε1 j()2

all j
∑ ε1 jε2 j

all j
∑ ! ε1 jεnj

all j
∑

ε1 jε2 j
all j
∑ ε2 j()2

all j
∑ ! ε2 jεnj

all j
∑

" " # "

ε1 jεnj
all j
∑ ε2 jεnj

all j
∑ ! εnj()2

all j
∑

 (4)

ε ij = yi,model − yi,expt.() j (5)

Problem Solution
The three reactions taking place are mathematically independent. Therefore mole balance design

equations for three reactants or products will be needed to model the system. In this case (isothermal,

isobaric, multiple reactions), the mole balance design equations will take the form shown in equation (6).
Choosing glucose (G), HMF (H) and levulinic acid (L) leads to the mole balances given in equations (7)

through (9) after the rate expressions are substituted. In this case, the unknowns that are found by

solving the differential model equations (the final values of CG, CH and CL) are the response variables, so

no additional expressions are needed to compute the model-predicted responses.

dni
dt

=V ri, j
j = all

reactions

∑ ⇒
d ni

V
⎛
⎝⎜

⎞
⎠⎟

dt
= ri, j

j = all
reactions

∑ ⇒ dCi

dt
= ri, j

j = all
reactions

∑ (6)

dCG

dt
= −k1CG ; CG 0() = CG

0 (7)

dCH

dt
= k1CG − k2 + k3()CH ; CH 0() = 0 (8)

dCL

dt
= k2CH ; CL 0() = 0 (9)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 2

Thus, the model we want to fit to the experimental data is given by equations (7) through (9), but as
noted in the problem analysis, we cannot use a numeric least squares method. Instead, we will have to

use a general numerical minimization routine. There are many software packages that provide numeric
routines for the minimization of a function. You should choose software that you are familiar with for this

purpose. No matter which software you select, you will need to provide the following information/data as
input:

• a set of guesses, one for each of the unknown parameters that appears in the model
• a set of experimental data points, each of which consists of the experimentally measured value of

the response variables and corresponding values for each of the set variables
• code that calculates the model-predicted value of the response variable for a data point, given the

value of each set variable for that data point along with the value of each model parameter
- here the code must first solve equations (7) through (9) numerically; to do so you will need to

provide three additional things as input (for each data point):

‣ the initial value of the independent variable, t, and the corresponding initial values of the

dependent variables, CG, CH and CL.

‣ the final value of the independent variable, t.
‣ code that evaluates the derivatives, i. e. using the right hand side of equations (7) through (9)

• code that evaluates the appropriate objective function, in this case equation (5) using the model-
predicted responses from the preceding bullet and the experimentally measured responses

Guesses are needed for each of the three rate coefficients, and if the guesses are too far off, the

numerical minimization method will fail. There are some strategies that can be used to generate a guess,

but I won’t go into them here. Instead, I will simply note that the following guesses were used here: k1 =

0.01, k2 = 0.1, k3 = 0.1.

The experimental set variables and response variables are used exactly as they appear in the

problem statement; no calculations are needed. For each experiment, the initial time is t = 0. The
corresponding initial concentration of glucose is one of the set variables and the initial concentrations of

HMF and levulinic acid presumably were zero. The final time for each experiment is the other set variable.
No quantities other than the dependent variables and the model parameters appear on the right hand

sides of equations (7) through (9), so no additional calculations are needed to implement the code for the
third main bullet item. Similarly, writing code to evaluate the right hand side of equation (4) is

straightforward and does not require any additional quantities to be computed. Therefore, we have all the
information and data we need to perform the fitting.

Upon performing the calculations with whatever software one prefers, one finds the best values of

k1 through k3, respectively, are 0.0032, 0.1405 and 0.0765 min-1. Since we did not use least squares,

values for the correlation coefficient and uncertainties are not computed. We could perform the

calculations to do so, but that goes beyond the scope of this course. The results can be used to prepare a
parity plot for each response variable and two residuals plots for each response variable. The former

parity plots are shown as Figures 1 through 3. They suggest a fairly good fit: the data fall near the

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 3

diagonal line. The parity plots are not shown here, but they show the deviations of the data from the
model to be random, not systematic. Thus, for a preliminary study, we can accept the kinetic model and

the rate coefficients found here. As noted, in a real kinetics study, many more data should be used.

Figure 1. Parity plot for the first response variable, CG.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 4

Figure 2. Parity plot for the first response variable, CH.

Figure 3. Parity plot for the first response variable, CL.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 5

Calculation Details Using MATLAB
Supplemental Unit S4 describes how to numerically fit a multiple response model to experimental

data when the model is either a set of non-differential equations or a set of initial value ordinary
differential equations. It also provides template codes for each of the two situations. In this problem the

model is a set of initial value ordinary differential equations (ODEs). The corresponding MATLAB template
file is named FitNumDifMR.m. That file needs to be modified in six places in order to apply it to solve a

particular problem. Each location where a modification is required is marked by a comment that begins “%
EDIT HERE.”

I started by making a copy of FitNumDifMR.m and saved it with the name Example_16_2.m. The
template file begins with a long set of comments, after which the function FitNumDifMR begins. I replaced

these comments with a comment stating the origin and purpose of the modified file. Since the template
file contains a MATLAB function, the function name must match the filename, so I changed the function

name from FitNumDifMR to Example_16_2. None of these are required modifications. The first required
modification involves entering all known constants and quantities from the problem statement. In the

present problem the only such data are the experimental set and response variables given in the table in
the problem statement. Each column in the table was entered as a column vector with a representative

variable name. In doing so, I made sure that the units used are consistent. The next required modification

involves combining the vectors containing the set variables into a matrix named x. I created such a matrix

where the first column contains the initial glucose concentrations and the second column contains the
reaction times. The third required modification similarly involves combining the vectors containing the

response variables into a matrix named y_hat. I created such a matrix where the first column contains

the final concentrations of glucose, the second column contains the final concentrations of HMF and the

third column contains the final concentrations of levulinic acid. Listing 1 shows the first part of the
modified file where all of these non-required and required modifications were performed.

Listing 1. Results of making the first three required modifications to FitNumDifMR.m and also modifying
the initial comments and the function name.

The fourth required modification appears in the internal function odeqns which follows immediately

after Listing 3. Within this function the independent variables in the set of ODEs is represented as v and

% Modified version of the MATLAB template file FitNumDifMR.m from "A First
% Course on Kinetics and Reaction Engineering" used in the solution of
% Example 16.2 of "A First Course on Kinetics and Reaction Engineering."
%
function Example_16_2(p_guess)
 % Data from the problem statement (in consistent units)
 CG0 = [0.4809 0.4809 0.4809 0.4809 0.4725 0.4725 0.4725 0.4725]';
 t = [36.0 143.0 296.0 561.0 25.0 185.0 335.5 462.0]';
 CG = [0.4188 0.2882 0.2188 0.0868 0.4163 0.2629 0.1598 0.1074]';
 CH = [0.0063 0.0046 0.0027 0.0011 0.0067 0.0043 0.0021 0.0014]';
 CL = [0.0298 0.1200 0.1682 0.2578 0.0279 0.1334 0.2056 0.2326]';

 x = [CG0 t];
 y_hat = [CG CH CL];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 6

the dependent variables are represented as the vector u. Thus, for the present problem v corresponds to

the reaction time, t, and u is a vector with three elements: CG, CH and CL. Within this internal function the

model parameters are available as a vector p which, in this problem, will contain three elements: k1, k2
and k3. The required modification involves evaluating the right hand sides of the model equations (7)

through (9) and saving the results as the rows of the column vector dudv, which, in this problem,

represents the set of derivatives of the concentrations with respect to time. For this problem, no additional

quantities are needed in order to evaluate the derivatives, and the coding, shown in Listing 2, is

straightforward.

Listing 2. Internal function odeqns after the fourth required modification of the template file,
FitNumDifMR.m.

The final two required modifications occur within the internal function named mrmodel. In this

internal function, the parameter values are available in the vector p, as before, and the set variables are

available in a vector named x_set that contains the initial glucose concentration for the current

experiment as its first element and the corresponding reaction time as its second element. The first of the

two modifications to mrmodel involve providing the initial values of the independent and dependent

variables of the ODEs along with the final value of the independent variable for the current data point. As

before, u and v represent the concentrations and reaction time, respectively. Each experiment begins

with the reaction time equal to zero, so v0 is set equal to 0. As before, u0 is a vector (only for initial

values) where the first element is the concentration of glucose, the second element is the concentration of

HMF and the third column is the concentration of levulinic acid. The initial concentration of glucose for the

present data point is available as the first element of the vector x_set. Since only glucose was present at

the start of each experiment, the initial concentrations of HMF and levulinic acid are always equal to zero.

The final reaction time is available as the second element of the vector x_set, so vf is set equal to that

element of x_set. Thus, this required modification was straightforward. In many cases, the

experimentally measured responses are related to the final values of the dependent variables of the

ODEs. The sixth and final required modification is to calculate those responses from the final values of

the dependent variables, in the present problem, CG, CH and CL. In this particular problem, however, the

final values of the dependent variables are the response variables. Thus all that is required is to set the

 % Function that evaluates the ODEs
 function dudv = odeqns(v,u)
 % Current parameter values are available in column vector p
 % Current set variable values are available in column vector x_set
 dudv = [
 -p(1)*u(1)
 p(1)*u(1) - (p(2) + p(3))*u(2)
 p(2)*u(2)
];
 end % of internal function odeqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 7

responses equal to these final values. Listing 3 shows the results of making the fifth and sixth required

modifications to the template file.

Listing 3. Internal function mrmodel after the final required modifications (highlighted) of the template file,
FitNumDifMR.m.

After all of the modifications were completed, a vector named guess was created at the MATLAB

command prompt containing the three guesses for the rate coefficients. The code then was executed by
typing Example_16_2(guess). The code did find a minimum for the objective function. It is possible that

the numerical method may not have fully converged, so the result was entered as the vector named

guess and the code was re-run. The same result was obtained, suggesting that the minimization routine

had converged. It is possible that the resulting values of the parameters correspond to a local minimum,
and not the global minimum, of the objective function. To test that, the code should be re-run using very

different guesses to see if it converges to the same result or a different one. For the present problem,
every guess that was used either led to these same results or else the numerical minimization failed.

 % Function that solves the model equations and calculates the model-
 % predicted responses
 function y = mrmodel(p_current)
 % Declare y
 y = zeros(n_data,n_resp);
 % Make the current parameters available to the model equations
 p = p_current;

 for i = 1:n_data
 % Make the set variables available to the model equations
 for j = 1:n_set
 x_set(j) = x(i,j);
 end

 % Initial and final values
 v0 = 0;
 u0 = [
 x_set(1)
 0
 0
];
 vf = x_set(2);

 % Solve the set of ordinary differential model equations
 [v,uu] = ode45(@odeqns,[v0 vf],u0);
% NOTE: For stiff equations replace ode45 with ode15s
 last_value = length(v);
 u = uu(last_value,:);

 % Use the solution to calculate the responses, y(1), y(2), ...
 % by evaluating f1(u(1),...,u(n),x_set(1),...,x_set(n_set)),
 % f2(u(1),...,u(n),x_set(1),...,x_set(n_set)), etc.
 y(i,:) = [
 u(1)
 u(2)
 u(3)
];
 end
 end % of internal function mrmodel

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 8

Listing 4 shows the command line input and output from running the code; the parity plots shown
previously and six residuals plots were also generated.

Listing 4. Command line input and output from running Example_16_2.m.

>> guess = [10^-2 10^-1 10^-1];
>> Example_16_2(guess)
Best Values for the Parameters:

pf =

 0.0032 0.1406 0.0765

>> guess = [0.0032 0.1406 0.0765];
>> Example_16_2(guess)
Best Values for the Parameters:

pf =

 0.0032 0.1405 0.0765

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 16.2 9

