CONTENTS

Front Matter

Title Page, Preface and Acknowledgements
About the Author
Status, History, Issues and Updates
Complementary Textbooks
Teaching Notes and Resources
A Note about Numerical Solutions

Course Units

I. Chemical Reactions
1. Stoichiometry and Reaction Progress
2. Reaction Thermochemistry
3. Reaction Equilibrium
II. Chemical Reaction Kinetics
A. Rate Expressions
4. Reaction Rates and Temperature Effects
5. Empirical and Theoretical Rate Expressions
6. Reaction Mechanisms
7. The Steady State Approximation
8. Rate-Determining Step
9. Homogeneous and Enzymatic Catalysis
10. Heterogeneous Catalysis
B. Kinetics Experiments
11. Laboratory Reactors
12. Performing Kinetics Experiments
C. Analysis of Kinetics Data
13. CSTR Data Analysis
14. Differential Data Analysis
15. Integral Data Analysis
16. Numerical Data Analysis
III. Chemical Reaction Engineering
A. Ideal Reactors
17. Reactor Models and Reaction Types
B. Perfectly Mixed Batch Reactors
18. Reaction Engineering of Batch Reactors
19. Analysis of Batch Reactors
20. Optimization of Batch Reactor Processes
C. Continuous Flow Stirred Tank Reactors
21. Reaction Engineering of CSTRs
22. Analysis of Steady State CSTRs
23. Analysis of Transient CSTRs
24. Multiple Steady States in CSTRs
D. Plug Flow Reactors
25. Reaction Engineering of PFRs
26. Analysis of Steady State PFRs
27. Analysis of Transient PFRs
E. Matching Reactors to Reactions
28. Choosing a Reactor Type
29. Multiple Reactor Networks
30. Thermal Back-Mixing in a PFR
31. Back-Mixing in a PFR via Recycle
32. Ideal Semi-Batch Reactors
IV. Non-Ideal Reactions and Reactors
A. Alternatives to the Ideal Reactor Models
33. Axial Dispersion Model
34. 2-D and 3-D Tubular Reactor Models
35. Zoned Reactor Models
36. Segregated Flow Models
37. Overview of Multi-Phase Reactors
B. Coupled Chemical and Physical Kinetics
38. Heterogeneous Catalytic Reactions
39. Gas-Liquid Reactions
40. Gas-Solid Reactions

Supplemental Units

S1. Identifying Independent Reactions
S2. Solving Non-differential Equations
S3. Fitting Linear Models to Data
S4. Numerically Fitting Models to Data
S5. Solving Initial Value Differential Equations
S6. Solving Boundary Value Differential Equations

Unit 12. Performing Kinetics Experiments

This website provides learning and teaching tools for a first course on kinetics and reaction engineering. The course is divided into four parts (I through IV). Here, in Part II of the course, the focus is on chemical reaction kinetics, and more specifically, on rate expressions, which are mathematical models of reaction rates. As you progress through Part II, you will learn how rate expressions are generated from experimental kinetics data.

The second section of Part II of the course focuses on gathering experimental data that can be used to test a rate expression. Obtaining those data requires the use of a reactor, and the subsequent analysis of the resulting data will require an accurate mathematical model for the reactor. Consequently Section B examines common types of laboratory reactors and models for them. The commonly used reactor models make assumptions about flow and other aspects of reactor operation, so methods for testing the conformity of experimental reactors to their models are discussed here. Section B also provides some guidelines for the generation of experimental kinetics data.

Unit 11 introduced the three most common types of laboratory reactors for the generation of kinetics data, and it described a few ways to test the assumptions in the models for those reactors without running any chemical reactions. Unit 12 describes a few additional ways to test the assumptions in the laboratory reactor models while chemical reactions are taking place. It then goes on to describe typical approaches for the generation of kinetics data using each type of reactor.

Learning Resources

Teaching Resources

  • Archive (.zip) - Contains all teaching resources listed below for this unit
  • Sample Class
  • Alternative Questions (.pdf) that could be used in a pre-class quiz
  • Alternative In-Class Learning Activities
    • Alternative Activity 12.1 (.zip) - an activity where students generate a large set of kinetics data using one of the kinetics simulators provided with this unit.
  • Simulator Source files  
    Please note that these simulators are intended for educational purposes only. They should not be used for any other purpose, and if they are, the author does not bear any responsibility or liability for the consequences.
     
    The “Netbeans Project folders” contain the Netbeans java project used to create them. Providing them in this way will allow instructors or students familiar with java and the Netbeans development environment to modify them. They were developed using version 6.7 of Netbeans. They use the Swing Application Framework, which is not supported in version 7.1 or higher of the Netbeans IDE. They are no longer in development, and I am not available to consult on any issues encountered when using them.

Practice Problems

to be added