CONTENTS

Front Matter

Title Page, Preface and Acknowledgements
About the Author
Status, History, Issues and Updates
Complementary Textbooks
Teaching Notes and Resources
A Note about Numerical Solutions

Course Units

I. Chemical Reactions
1. Stoichiometry and Reaction Progress
2. Reaction Thermochemistry
3. Reaction Equilibrium
II. Chemical Reaction Kinetics
A. Rate Expressions
4. Reaction Rates and Temperature Effects
5. Empirical and Theoretical Rate Expressions
6. Reaction Mechanisms
7. The Steady State Approximation
8. Rate-Determining Step
9. Homogeneous and Enzymatic Catalysis
10. Heterogeneous Catalysis
B. Kinetics Experiments
11. Laboratory Reactors
12. Performing Kinetics Experiments
C. Analysis of Kinetics Data
13. CSTR Data Analysis
14. Differential Data Analysis
15. Integral Data Analysis
16. Numerical Data Analysis
III. Chemical Reaction Engineering
A. Ideal Reactors
17. Reactor Models and Reaction Types
B. Perfectly Mixed Batch Reactors
18. Reaction Engineering of Batch Reactors
19. Analysis of Batch Reactors
20. Optimization of Batch Reactor Processes
C. Continuous Flow Stirred Tank Reactors
21. Reaction Engineering of CSTRs
22. Analysis of Steady State CSTRs
23. Analysis of Transient CSTRs
24. Multiple Steady States in CSTRs
D. Plug Flow Reactors
25. Reaction Engineering of PFRs
26. Analysis of Steady State PFRs
27. Analysis of Transient PFRs
E. Matching Reactors to Reactions
28. Choosing a Reactor Type
29. Multiple Reactor Networks
30. Thermal Back-Mixing in a PFR
31. Back-Mixing in a PFR via Recycle
32. Ideal Semi-Batch Reactors
IV. Non-Ideal Reactions and Reactors
A. Alternatives to the Ideal Reactor Models
33. Axial Dispersion Model
34. 2-D and 3-D Tubular Reactor Models
35. Zoned Reactor Models
36. Segregated Flow Models
37. Overview of Multi-Phase Reactors
B. Coupled Chemical and Physical Kinetics
38. Heterogeneous Catalytic Reactions
39. Gas-Liquid Reactions
40. Gas-Solid Reactions

Supplemental Units

S1. Identifying Independent Reactions
S2. Solving Non-differential Equations
S3. Fitting Linear Models to Data
S4. Numerically Fitting Models to Data
S5. Solving Initial Value Differential Equations
S6. Solving Boundary Value Differential Equations

Unit 30. Thermal Back-Mixing in a PFR

This website provides learning and teaching tools for a first course on kinetics and reaction engineering. Here, in Part III of the course, the focus is on the modeling of chemical reactors. In particular, it describes reaction engineering using the three ideal reactor types: perfectly mixed batch reactors, continuous flow stirred tank reactors and plug flow reactors. After considering each of the ideal reactor types in isolation, the focus shifts to ideal reactors that are combined with other reactors or equipment to better match the characteristics of the reactor to the reactions running within it.

The preceding sections of Part III examined reaction engineering using one of the three ideal reactor types in isolation. Section E considers the important topic of matching the reactions being run to the reactor that is best-suited to those reactions. It examines ways in which the ideal reactors can be modified or augmented so that their performance is further improved. In all cases considered in this section, each reactor is still one of the three ideal types, and it is still modeled as described in the preceding sections. The things that differ from prior analyses are the external connections to the reactor or reactors. These changes lead to improved performance for a selected class of reaction, but they can also affect the mathematical approach used to solve the reactor model equations.

One advantage offered by a CSTR when running an exothermic reaction is that the cool feed gets heated by mixing with the contents of the reactor. As a consequence the reaction takes place at the higher exit temperature where the rate is larger. Unit 30 shows how a PFR can be augmented by adding a heat exchanger that heats the feed using the product stream. By means of this augmentation, the PFR gains some of the thermal back-mixing benefits enjoyed by a CSTR.

Learning Resources

Teaching Resources

Practice Problems

1. Liquid phase reaction (1a) is exothermic with a constant heat of reaction of -75.6 kJ mol-1. The second order (in A) rate coefficient has a pre-exponential factor of 5.22 x 103 m3 mol-1 min-1 and an activation energy of 62.8 kJ mol-1. A solution of 1 M A at 20 °C is fed to a counter-current heat exchanger at a rate of 1.25 L min-1; after passing through the heat exchanger it is fed to a 0.5 m3 PFR operating adiabatically. The product of the heat transfer coefficient and the heat transfer area, UA, based on the arithmetic average temperature change is 5300 J K-1 min-1. If the heat capacity of the solution is constant and equal to 2 J mL K-1, what percentage of the A in the feed will be converted and at what temperature will the final process stream leave the reactor?

  A → Z (1a)  

(Problem Statement as .pdf file)