
A First Course on Kinetics and Reaction Engineering

Unit 16. Numerical Data Analysis

Overview
In Units 13 through 15 the models for the kinetics experiments were linearized, after which they 

were fit to experimental data using linear least squares. This unit describes how a numerical 
implementation of least squares fitting can be used for the analysis of kinetics data when either the 

differential mole balance design equation cannot be analytically integrated or the algebraic model 
equation cannot be linearized. It also discusses the analysis of kinetics data where more than one 

reaction was taking place or more than one variable related to the extent of reaction was measured.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• multiple response data

• complete multiple response data set
Upon completion of this unit, you should be able to perform the following specific tasks and be able to 

recognize when they are needed and apply them correctly in the course of a more complex analysis:
• Distinguish between single response data and multiple response data

• Fit non-linear models to single response kinetics data and assess the accuracy of the resulting 
model

• State that a simple sum of the squares of the errors for all response variables is not, in most cases, 
the appropriate function to be minimized when fitting a model to multiple response data

• Fit linear or non-linear models to a complete multiple response kinetics data set

Information
At this point in this course, you hopefully have learned how to generate a rate expression using 

kinetics data from one of the ideal reactor types, with three restrictions. The first restriction is that, if the 

mole balance design is a differential equation, the differential mole balance design equation can be 
integrated analytically to obtain an algebraic equation. The second restriction is that the algebraic form of 

the model equation can be written in the form of a linear equation. Neither of these restrictions is required, 
they were imposed because most students taking a course like this are already familiar with linear least 

squares fitting. Thus, by imposing these restrictions, students can focus more on the analysis of the 
kinetics data and less on the fitting process. Now, having gained some familiarity with kinetics data 

analysis, these restrictions can be removed. That is to say, this unit can now focus on the analysis of 
kinetics data when the model equation cannot be linearized, and even when it cannot be integrated 

analytically.
In general, the analysis of kinetics data involves four kinds of quantities: constants with known 

values, parameters (unknown constants), experimental set variables (variables whose values are under 
the direct control of the person doing the experiments) and response variables (variables whose values 
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are measured once all the experimental settings have been established). When model equations are 

linearized, x and y are defined to be specific combinations of the set and response variables that result in 

a linear model equation. Since the model equation is not being linearized in this unit, x will be used to 

represent set variables; if there are two or more set variables, subscripts will be used to distinguish the 

different set variables. Similarly, y will be used to represent the response variable. More specifically, ŷ will 

be used to represent the experimentally measured response variable values and y will be used to 

represent the response variable values predicted by the model.
With linear least squares, it is possible to derive analytical expressions for the direct calculation of 

the model parameters (slopes and intercept). For some non-linear models it is also possible to derive 
analytical expressions for the calculation of the model parameters, but this approach cannot always be 

used, so it will not be considered here. Instead, this course will use numerical least squares fitting for all 
situations where linear least squares cannot be used. You can think of numerical least squares fitting as a 

trial and error method (though in actuality it is more sophisticated than that). A value is guessed (by you) 
for each parameter in the model. The computer the calculates the sum of the squares of the errors 

between the measured values of the response variable, ŷ, and the values that the model predicts for the 

response variable, y. It then guesses a new value for each parameter and computes the corresponding 

sum of the squares of the errors. Whichever guess gave a lower sum of the squares of the errors is taken 
as the better set of parameter values. The computer then repeats this process, over and over, until no 

better guesses can be found.
The details of numerical least squares fitting are described in Supplemental Unit S4; it is 

recommended that you read that supplemental unit now. There are fewer software packages that 
implement least squares numerically, but as with linear least squares, you should feel free to use a 

software package of your own choosing. If MATLAB is available to you and you elect to use it, then you 
will find template files for doing so included in Supplemental Unit S4, and at the end of the examples in 

this unit there will be a description of how those template files can be used to solve the example. No 
matter what software you choose to use to perform numerical least squares fitting you will need to provide 

three things:
• a set of guesses, one for each of the unknown parameters that appears in the model

• code that calculates the value of the response variable, y, for a data point, given the value of 

each set variable, xi, for that data point along with the value of each model parameter; in other 

words, code that uses the model equation to calculate y, given the xi values and the parameter 

values
• a set of experimental data points, each of which consists of the experimentally measured value of 

the response variable (y) and corresponding values for each of the set variables (xi)

There are three situations that one may encounter when using the model equation to calculate y, 
given the xi values and the parameter values (second bullet item above). The first is that the model 

equation can be solved explicitly for y. (This includes the situation where the model equation is a 
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differential equation that can be integrated analytically and the resulting integrated model equation can be 
solved explicitly for the response variable.) In this case the necessary code will simply evaluate the model 

equation. The second situation is one where the model equation is not a differential equation, but 

nonetheless it cannot be solved explicitly for y. In the third situation, the model equation is a differential 

equation, but either it cannot be integrated analytically to obtain an algebraic equation or the integrated 

model equation cannot be solved explicitly for the response variable. In both of these latter cases, the 
model equation will need to be solved numerically, and (no matter what software you choose to use) that 

will require you to provide things in addition to those listed in the bullets above (see Supplemental Unit 
S4). Note, also, that in these latter two situations, the model could actually take the form of a set of 

algebraic equations (second situation) or a set of coupled differential equations (third situation), and not 
just a single model equation.

It should also be pointed out that in the third situation, an integral data analysis is being performed, 
but without the need to analytically integrate the differential model equation. In fact, this numerical 

approach can be used even when it is possible to analytically integrate the differential model equation and 
to linearize the resulting integrated model equation. However, there is a trade-off if one chooses to always 

use numerical least squares with numerical solution of the model equation(s). One avoids having to 
perform the integration and linearization manually, but one introduces the need to provide guesses for the 

model parameters as well as the possibility of convergence and other issues associated with numerical 
solutions.

The third restriction that has been imposed prior to this point in the course is that there is only one 
response variable in the kinetics data set. When only one reaction is taking place, it is only necessary to 

measure one response variable that is related to the extent of reaction. If that is done, the data are said to 
be single response data, and every problem encountered prior to this unit has involved single response 

data. However, one could measure two response variables, each of which is related to the extent of 
reaction. In fact, if there are two or more mathematically independent reactions taking place, then one 

must measure one response variable per mathematically independent reaction. In either of these 
situations the data are said to be multiple response data. The experimental data consist of data points 

where each data point includes the values of the experimental set variables, xi, for that experiment along 

with the corresponding experimentally measured values of the response variables, yi.
Two things change when one needs to analyze multiple response data. The first is that one needs 

to decide what objective function to minimize. Recall, with single response data the objective function that 

is minimized is the sum (over all of the data points) of the squares of the differences between the 
experimentally measured responses and the responses predicted by the model. Clearly, when there is 

more than one response measured, a different objective function is needed. It turns out that the proper 
choice of an objective function is not a simple matter, and this causes the second change that is 

encountered when analyzing multiple response data: the non-linear least squares fitting routines that are 
found in most mathematics programs only handle single response data. Supplemental Unit S4 also 

discusses fitting models to multiple response data; if you haven’t already done so, you should read it at 
this time.
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Intuitively, one might guess that the best objective function to use with multiple response data is just 
the sum of the squares of the errors of each of the response variables. For example, if there were two 

response variables, y1 and y2, one might think that equation (16.1) would be the appropriate objective 

function to minimize. In fact, it can be shown that equation (16.1) is only appropriate under very specific 
conditions that are very rarely satisfied experimentally [1]. We will not consider how to determine what is 

the appropriate objective function to use when fitting multiple response data. However, it has been shown 
[2, 3] that the determinant in equation (16.2) is an appropriate objective function for the analysis of 

multiple response data when every response has been measured in every data point (i. e. the responses 
correspond to a full matrix) and the errors can be assumed to be Normally distributed. The latter 

assumption is more likely to be satisfied experimentally. The errors, εij, appearing in equation (16.2) are 

defined in equation (16.3) where i denotes one of the response variables, j denotes one of the 

experimental data points and n denotes the number of different response variables. It should be noted 

that if there is only one response variable, equation (16.2) reduces to the sum of the squares of the errors 
(i. e. least squares), as would be expected.
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ε ij = yi,model − yi,expt.( ) j  (16.3)

As already noted, most mathematics programs only provide numerical least squares fitting routines 

for single response data. However, they typically do provide routines for minimizing a function with 
respect to a set of variables. Hence, one can usually fit a model to multiple response data by calling one 

of these minimization routines instead of a nonlinear least squares fitting routine. The minimization routine 
will need a user-supplied subroutine that provides the function to be minimized. For fitting complete sets 

of multiple response data, the user-supplied routine should compute the objective function given in 
equation (16.2). In order to do so, specifically in order to calculate the responses predicted by the model, 

that user-supplied subroutine will typically need to call additional routines to solve either a set of nonlinear 
algebraic equations or a set of coupled ordinary differential equations.

Unfortunately, the general minimization routines provided by mathematics programs will not 
compute a correlation coefficient or uncertainties in the set of parameters that minimize the objective 
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function. These quantities can be computed separately, but it is beyond the scope of this course to 
consider how to do so. A good statistics book or course is recommended.

References Cited

1. W. G. Hunter, Ind. Eng. Chem. Fundamentals 6(3), 461 (1967).

2. G. E. P. Box and N. R. Draper, Biometrika 52, 355 (1965).

3. W. E. Stewart, M. Caracotsios and J. P. Sørensen AIChE J. 38(5), 641 (1992).

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Unit 16 5


