
A First Course on Kinetics and Reaction Engineering

Example 30.1

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this

unit. It illustrates the general approach to solving the design equations for a PFR with feed pre-heating by
the effluent stream.

Problem Statement
Reaction (1) takes place in an adiabatic, steady state PFR using 750 dm3 min-1 of a constant-

density solution containing the reactant at a concentration of 3.8 mol dm-3 and a temperature of 25 °C.
The heat of reaction is -79.8 kJ mol-1, and may be assumed to be constant over the range of

temperatures where this reactor operates. The heat capacity of the solution is equal to 987 cal L-1 K-1,
independent of composition and temperature. For a conversion of 80%, compare the required PFR

volume without thermal back-mixing to that with thermal back-mixing assuming a simple counter-current

heat exchanger that can be described using an arithmetic mean temperature difference with AUAM = 1500

kJ min-1 K-1. The rate expression is given in equation (2).

A → Z (1)

r1 = 3.38×106 min−1()exp −50 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA (2)

Problem Analysis
This is a reaction engineering problem, not a kinetics problem, because we are given the rate

expression along with other information about the operation of a reactor and asked to find reactor

properties. The reactor is a PFR, and since nothing in the problem statement indicates transient behavior,
we can model the reactor using the steady state design equations. The reactor volume is requested, not
its diameter and length, so we will need to use the cumulative reactor volume as the independent variable

in the design equations. The problem does not provide sufficient information to write a momentum

balance, so it will be necessary to assume that the pressure drop is negligible. The reactor inlet and outlet
are integrated with a heat exchanger, so we will most likely need to write design equations for the heat
exchanger, too.

Problem Solution

Reading through the problem, we find that we are given the values of the following constant

quantities: !V = 750 dm3 min-1, CA,feed = 3.8 mol dm-3, Tfeed = 25 ºC, ΔH1(T) = -79.8 kJ mol-1,
!Cp = 987 cal

L-1 K-1, fA = 0.8, k0 = 3.38 x 106 min-1, E = 50 kJ mol-1 and AUAM = 1500 kJ min-1 K-1. Since the problem

states that the solution density is constant and the stream is never split, the volumetric flow rate will be

AFCoKaRE, Example 30.1 1

constant and it isn’t necessary to specify it separately for each stream. The molar flow rate of A into the

process is also constant and can be calculated using equation (3). Finally, the problem does not indicate

that any product Z is present in the feed to the process, so ṅZ,feed = 0.

 !nA, feed =
!VCA, feed (3)

The model for the PFR will be the same whether the PFR is integrated with a heat exchanger or

isolated, but the identity of the streams entering and leaving the reactor will differ. For that reason, when

writing the PFR design equations, “in” and “out” will be used to denote the stream entering the PFR and

the stream leaving the PFR, respectively. The general steady state PFR mole and energy balances are

given by equations (4) and (5). In the present case there is only one reaction, so the summations over j

contain only one term. In addition, a volumetric heat capacity for the fluid as a whole is given, allowing the

summation over the individual species heat capacities to also be replace by a single term. The reactor is

adiabatic, so the heat transfer term in the energy balance equation is set to zero. Finally, the cross

sectional area can be moved inside the derivatives as indicated in equation (6), where V denotes the

cumulative reactor volume. After all these simplifications and substitution of the rate expression, the mole

balances on A and Z reduce to equations (7) and (8) and the energy balance reduces to equation (9).

d !ni
dz

= πD2

4
ν i, jrj

j=all
reactions

∑ (4)

πDU Te −T() = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dT
dz

+ πD2

4
rjΔH j()

j=all
reactions

∑ (5)

1
πD2

4

d
dz

= d
dV

 (6)

d !nA

dV
= f1 V , !nA, !nZ ,T() = − 3.38×106 min−1()exp −50000 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA (7)

d !nZ

dV
= f2 V , !nA, !nZ ,T() = 3.38×106 min−1()exp −50000 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA (8)

dT
dV

= f3 V , !nA, !nZ ,T() =
−ΔH1 3.38×106 min−1()exp −50000 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA

!V "Cp

 (9)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 2

Equations (7) through (9) are ordinary differential equations that can be solved numerically. To do
so, no matter what software is used, it will be necessary to provide (a) initial values for the independent

(V) and dependent (ṅA, ṅZ and T) variables, (b) the final value of either the independent variable or one of

the dependent variables and (c) code that is given values for the independent and dependent variables

and uses those values to evaluate the functions f1 through f3 in equations (7) through (9).

The initial conditions needed to solve the design equations for a PFR correspond to the reactor

inlet. At the inlet to the reactor, the cumulative volume will equal zero. The initial values of the dependent
variables are constants, equations (10) through (12). In this problem, the conversion of A is specified, so

that the outlet molar flow rate of A becomes the final condition needed to solve the design equations for
the PFR. Since all conversion takes place in the reactor, the final condition can be calculated using

equation (13).

 !nA V = 0() = !nA,in (10)

 !nZ V = 0() = !nZ ,in (11)

T V = 0() = Tin (12)

 !nA V() = !nA,in 1− fA() (13)

The code needed to solve the design equations numerically will be given values for V, ṅA, ṅZ and T.

It must use those to evaluate f1 through f3 in equations (7) through (9). Going through those equations

variable by variable, the only quantity that is not known is the concentration of A. By definition, the

concentration of A can be calculated using equation (14). Once that is done, the design equations can be

solved numerically.

CA =

!nA
!V

 (14)

Now that we have a model for the PFR, we can consider the two reactor systems described in the

problem statement. The first system is an isolated PFR, Figure 1.

Figure 1. Schematic representation of the isolated PFR.

In this configuration, the stream entering the PFR is the feed stream. The initial conditions, that is,

the inlet molar flow rates of A and Z and the inlet temperature are known, equations (15) through (17).

The final condition is found using equation (13). With that, everything needed to solve the PFR design

a b

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 3

equations is available, and the design equations can be solved numerically to find that a reactor volume

of 37400 L is required to reach the specified conversion.

 !nA,in = !nA, feed (15)

 !nZ ,in = !nZ , feed = 0 (16)

Tin = Tfeed (17)

The second system to be considered consists of an integrated counter-current heat exchanger and

a PFR, as shown schematically in Figure 2. In this configuration, the inlet stream is stream b, and the

outlet stream is stream c. However, since no reaction takes place within the heat exchanger, ṅi,a = ṅi,b,

and the initial values of the molar flow rates are the same as before, equations (15) and (16). The final

condition is also the same as before and is calculated using equation (13). However for this configuration

the initial value of the temperature, equation (18), is not known.

Tin = Tb (18)

Figure 2. Schematic representation of the integrated heat exchanger and PFR.

Thus, the PFR design equations cannot be solved independently of the heat exchanger design

equations. Put differently, the heat exchanger design equations are needed in order to calculate the value

of Tb. The heat exchanger design equations consist of the requirement that the heat lost by one stream

must equal the heat gained by the other stream, equation (19), and the heat transfer equation. In this

case, the problem specifies that the heat transfer can be described using an arithmetic mean temperature

difference, equations (20) and (21).

0 = !ni,c Ĉp,i dT
Tc

Td

∫
i=all
species

∑ + !ni,a Ĉp,i dT
Ta

Tb

∫
i=all
species

∑ (19)

− !ni,c Ĉp,i dT
Tc

Td

∫
i=all
species

∑ =UAMAΔTAM (20)

a b

cd

Plug Flow ReactorHeat
Exchanger

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 4

ΔTAM = Tc +Td
2

− Ta +Tb
2

 (21)

In the present problem, we know the volume specific heat capacity of the fluid as a whole, so the

summations in equations (19) and (20) can be replaced with single terms. In addition, since the heat

capacity is constant, the integral can be evaluated, leading to equations (22) and (23). We have only two

heat exchanger design equations; in order to solve them numerically, we must identify two unknowns that

appear in those design equations. As you may have noticed from the equations, and as recommended in

the informational reading for this unit, I have selected Tb and Td to be the two unknowns. Importantly,

even though the value of Tc is unknown, I did not choose it as one of the unknowns. The reason for this

choice should become apparent upon considering the numerical solution of equations (22) and (23).

 0 = f4 Tb ,Td() = !V "Cp Td −Tc() + !V "Cp Tb −Ta() (22)

 0 = f5 Tb ,Td() = !V "Cp Td −Tc() + AUAMΔTAM (23)

To solve equations (22) and (23) numerically it is necessary to provide (a) a guess for the

unknowns and (b) code that is given values for the unknowns and uses them to evaluate the two

functions, f4 and f5, in equations (22) and (23). Providing a guess for the unknowns is straightforward. The

code that is needed will be given values for Tb and Td. In order to evaluate the functions, f4 and f5, it will

be necessary to know or calculate every other quantity that appears in equations (22) and (23). Since the

code will be given a value for Tb, the remaining initial value needed in order to solve the PFR design

equations will be known. Therefore, the PFR design equations can be solved, and that will yield the value

of Tc. In this configuration, Ta is equal to Tfeed. With that value, the arithmetic mean temperature difference

can be calculated using equation (21). The remaining quantities in equations (22) and (23), namely, !V ,

!Cp and AUAM are known constants. Therefore, the heat exchanger design equations can be solved

numerically to find the values of Tb and Td. Once Tb is known, the PFR design equations can be solved to

find that the required volume is only 8870 L when thermal back-mixing is used.

Calculation Details Using MATLAB
Two MATLAB functions were written to perform the calculations needed to solve this problem. The

first, Example_30_1_pfr, takes the inlet temperature as an argument and solves the PFR design

equations, returning the reactor volume and the outlet temperature. The second MATLAB function,
Example_30_1, performs the calculations needed to evaluate the two reactor configurations, solving the

heat exchanger design equations and calling the first function as necessary.
MATLAB function for modeling the PFR. The PFR design equations are initial value ODEs.

Supplemental Unit S5 provides template files that can be used to solve them. In this problem, the final
value of a dependent variable is provided, so the appropriate template file is SolvIVDifD.m. Before that file

can be used, you must make six required modifications.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 5

To begin, I made a copy of the template file and saved it as Example_30_1_pfr.m; a copy of that file
accompanies this solution. Since the function name must match the filename, I changed the name of the

function to Example_30_1_pfr. At the same time, I changed the function declaration so that the inlet
temperature was passed to the function as an argument and so that the reactor volume and the outlet

temperature were returned. The template file begins with a long set of comments describing what it does
and how to use it; I replaced these comments with a brief comment stating the purpose of the modified

version. None of these modifications were required.
The first required modification involves entering all the known quantities from the problem

statement along with constants that will be needed (from handbooks or other reference sources). As
these are entered, they should be converted to a consistent set of units. For this problem, I decided to

use units of [L, mol, min, K, and kJ]. Listing 1 shows the first part of the modified file.

Listing 1. Non-required modifications and entry of known constants.

The second required modification involves entering the code to evaluate functions f1 through f3 in

equations (7) through (9). Notice that the equations are provided as a vector quantity. Thus, it is

necessary to map the dependent variables used in the problem statement (ṅA, ṅZ and T) to a vector z,

and the corresponding derivatives are mapped to a vector dzdt. I find it useful at the start of the internal

function that will evaluate the derivatives, to define local variables with the names used in the problem
statement. This modification is not required, but in my opinion, it makes the code more readable and

easier to debug. In addition, the list of variables here serves as a reminder of the mapping of the problem

statement variables to the vector z. Given the values of the independent and dependent variables, the

concentration of A and the rate can be calculated using equations (14) and (2), respectively. Following

that, the functions f1 through f3 in equations (7) through (9) can be evaluated, saving the results in the

vector dzdt. These modifications all occur within the internal function odeqns, which is shown in Listing

2.

% Modified version of the MATLAB template file SolvIVDifD.m used to model
% the pfr in Example 30.1 of "A First Course on Kinetics and Reaction
% Engineering."
%
function [V,Tout] = Example_30_1_pfr(Tin)
 % Known quantities and constants (in consistent units)
 VFR = 750.0; % L/min
 CAa = 3.8; % mol/L
 dH = -79.8; % kJ/mol
 cP = 987.0 * 4.184e-3; % kJ/L/K
 fA = 0.8;
 k0 = 3.38e6; % /min
 E = 50.0; % kJ/mol
 R = 8.31446e-3; % kJ/mol/K
 nAin = CAa*VFR;
 nZin = 0;

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 6

Listing 2. Internal function odeqns after required modifications have been made.

The third required modification involves providing the initial values of the independent and

dependent variables. The initial values of the dependent variables are entered as a vector named z0, and

they must use the same mapping of the problem variables to the vector z0 as was used previously for z.

The results of performing this modification are shown in Listing 3.

Listing 3. Specification of the initial values.

The fourth and fifth required modifications involve providing the final value of one dependent

variable, in this problem ṅA,out. The first step (fourth modification) is to select a value for tf (the final value

of the independent variable, V) that is much greater than the actual cumulative reactor volume. Of course,

you don’t know what the volume is at this point, so all you can do is set tf to a large number. The

cumulative volume should never reach this value. If it does, the code will print a warning and instruct you

to set tf to a larger value.

The second step (fifth modification) is to provide the final condition. Basically, this involves adding

the code to calculate the value of a variable named stop_when. The variable, stop_when, should equal

zero when the final condition is reached. Here the final condition we want to reach is given in equation

(13). Noting that z(1) will equal the current value of ṅA,out and re-arranging equation (14) yields equation

(24). Clearly, the final condition will be reached when the right hand side of equation (24) equals zero, so

 % Function that evaluates the ODEs
 function dzdt = odeqns(t,z)
 nA = z(1);
 nZ = z(2);
 T = z(3);
 CA = nA/VFR;
 r = k0*exp(-E/R/T)*CA;
 dzdt = [
 -r
 r
 -dH*r/VFR/cP;
];
 end % of internal function odeqns

 % Initial values
 t0 = 0;
 z0 = [
 nAin
 nZin
 Tin
];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 7

the variable stop_when is set equal to the right hand side of equation (24). The results of these two

modifications are shown in Listing 4.

 0 = !nA,out − !nA,in 1− fA() = z 1()− !nA,in 1− fA() (24)

Listing 4. Modifications to specify the final conditions.

The sixth and final required modification is to use the results from solving the ODEs to calculate

whatever the problem requested. In this case, all that needs to be done is to set the values of the reactor
volume and the outlet temperature so that they will be returned by the function. This is shown in Listing 5.

Listing 5. Final modification where the return variables are set to the proper values.

MATLAB function for evaluating the two reactor configurations. In the configuration featuring

an integrated heat exchanger and PFR, the solution showed that a set of non-linear (non-differential)
equations must be solved (the heat exchanger design equations). Supplemental Unit S2 describes how to

solve such equations numerically using MATLAB, and it provides a template file named SolvNonDif.m for
doing so. That template file was used as the starting point for the function for evaluating the two reactor

configurations.
Before it can be used to solve a problem, SolvNonDif.m must be modified in four places, each

indicated by a comment that begins “% EDIT HERE”. In addition to those required modifications, I
recommend that you work with a copy of the file that has been given a more meaningful name. In this

case, I made a copy of the file and saved it as Example_30_1.m; a copy of that file accompanies this
solution. Since the function name must match the filename, I changed the name of the function to

Example_30_1. At the same time, knowing that I won’t need to use the results from these calculations in
subsequent calculations, I changed the function so that it does not return any values. The template file

begins with a long set of comments describing what it does and how to use it; I replaced these comments

 tf = 1E6; % This value should NOT be reached
 options = odeset('Events',@stop);
 [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);

 % Function that provides the integration stopping criterion
 function [stop_when, isterminal, direction] = stop(t,z)
 isterminal = 1;
 direction = 0;

 stop_when = z(1) - nAin*(1-fA);
 end % of internal function stop

 % set the return value
 V = t_f;
 Tout = z(3);
end % of Example_30_1_pfr.m

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 8

with a brief comment stating the purpose of the modified version. None of these modifications were
required. The first required modification is to enter the values of all universal and problem specific

constants, converting them to a consistent set of units as they are entered. Listing 6 shows the results of
all these modifications.

Listing 6. Initial modifications to the template file SolvNonDif.m.

The next required modification is to provide code that evaluates the functions, f4 and f5, in equations

(22) and (23). At this point, you need to decide which of the unknowns in the equations being solved is

going to be represented as z1, which as z2, and so on. I recommend actually defining variables with

names similar to those used in your solution and setting them equal to the corresponding zi. Doing so will

make your code a little less efficient, but it may also reduce the chances of coding errors where, for

example, you use z(2) when it you should use z(3). Listing 7 shows how this was done in

Example_30_1.m and how code to evaluate the functions was entered so that the vector named f

contains the value of f4 as its first element, the value of f5 as its second element.

Listing 7. Modifications to evaluate the functions being solved.

The third required modification is where guesses for the unknowns in the heat exchanger design

equations are provided. The guesses are entered in the array named z_guess. They must be entered in

% Modified version of the MATLAB template file SolvNonDif.m used in the
% solution of Example 30.1 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_30_1
 % Known quantities and constants (in consistent units)
 VFR = 750.0; % L/min
 CAa = 3.8; % mol/L
 Ta = 25 + 273.15; % K
 UA = 1500.0; % kJ/min/K
 dH = -79.8; % kJ/mol
 cP = 987.0 * 4.184e-3; % kJ/L/K
 fA = 0.8;
 nAa = VFR*CAa;

 % Function that evaluates the equations
 function f = evalEqns(z)
 Tb = z(1);
 Td = z(2);
 [V,Tc] = Example_30_1_pfr(Tb);
 AMTD = 0.5*((Td-Ta) + (Tc-Tb));
 f = [
 VFR*cP*(Tb-Ta) - VFR*cP*(Tc-Td)
 VFR*cP*(Tb-Ta)- UA*AMTD
];
 end % of internal function evalEqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 9

order with z1 first and zn last. If you follow my recommendation in the previous modification, the

statements where variables with more meaningful names were defined will serve as a key to remind you

which variable is z1, which is z2, and so on. Listing 8 shows that I simply guessed that Tb would be 25 K

larger than Ta and Td would be 50 K larger than Ta.

Listing 8. Modification where guesses are provided for the unknowns.

The final modification is where any additional calculations are performed after the non-linear

equations have been solved. Solving the heat exchanger design equations yields Tb, the PFR inlet

temperature. Therefore, after the heat exchanger design equations had been solved, the MATLAB

function for solving the PFR design equations was called, using that value of Tb. Doing so returns the

required PFR volume for the integrated heat exchanger and PFR. This value is displayed as V_backmix.

After that, the reactor configuration without a heat exchanger is evaluated by again calling the MATLAB

function for solving the PFR design equations, but using the feed temperature, Ta, as the PFR inlet

temperature. The volume of the PFR is returned and displayed as V_no_backmix. These modifications

are shown in Listing 9.

Listing 9. Final modification where the results of solving the heat exchanger design equations are used to
calculate the PFR volume.

At this point, Example_30_1.m can be executed by by typing Example_30_1 at the MATLAB

command prompt. The resulting output is shown in Listing 10. It is important to check first, that the PRF
code stopped because the specified conversion was reached and second, that the non-linear equation

solver converged. In the former case, a warning would have been printed if the specified volume was
reached instead of the specified conversion. No such warning appears, so the proper final condition was

reached. In the latter case, the output reports that the equations were solved. Therefore, the results
produced by the calculations can be accepted.

 % guesses for the solution
 z_guess = [
 Ta + 25
 Ta + 50
];

 Tb = z(1);
 [V,T] = Example_30_1_pfr(Tb);
 V_backmix = V

 % Case with no backmix, feed to reactor is at Ta
 [V,T]=Example_30_1_pfr(Ta);
 V_no_backmix = V

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 10

Listing 10. Output from the execution of Example_30_1.

Example_30_1

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
 324.3706
 356.8946

The corresponding values of the functions being solved are as follows:

f =
 1.0e-09 *

 -0.1746
 0.0041

V_backmix =
 8.8656e+03

V_no_backmix =
 3.7398e+04

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 30.1 11

