![]() |
||
CONTENTSFront MatterCourse UnitsI. Chemical Reactions
II. Chemical Reaction Kinetics
A. Rate Expressions
B. Kinetics Experiments
C. Analysis of Kinetics Data
III. Chemical Reaction Engineering
A. Ideal Reactors
B. Perfectly Mixed Batch Reactors
C. Continuous Flow Stirred Tank Reactors
D. Plug Flow Reactors
E. Matching Reactors to Reactions
IV. Non-Ideal Reactions and Reactors
A. Alternatives to the Ideal Reactor Models
B. Coupled Chemical and Physical Kinetics
Supplemental Units |
Unit 21. Reaction Engineering of CSTRsThis website provides learning and teaching tools for a first course on kinetics and reaction engineering. Here, in Part III of the course, the focus is on the modeling of chemical reactors. In particular, it describes reaction engineering using the three ideal reactor types: perfectly mixed batch reactors, continuous flow stirred tank reactors and plug flow reactors. After considering each of the ideal reactor types in isolation, the focus shifts to ideal reactors that are combined with other reactors or equipment to better match the characteristics of the reactor to the reactions running within it. Section C of Part III examines reaction engineering for continuous flow stirred tank reactors (CSTRs). As was done for batch reactors in the previous section of the course, common reaction engineering tasks are identified and the qualitative performance of CSTRs is examined. CSTRs are typically designed to operate at steady state, but getting them started and shutting them down involves transient operation. The mathematical analysis of transient reactors differs from that for steady state reactors, so these two situations are presented separately. In addition, CSTRs can display a phenomenon known as multiplicity of steady states which is discussed in this section. Unit 21 introduces the topic of reaction engineering for CSTRs. It describes how to qualitatively analyze a CSTR, with an emphasis on the differences between CSTRs and batch reactors. It also distinguishes between steady state operation and transient operation. It is critically important to be able to make this distinction when solving problems involving CSTRs in subsequent units. Learning Resources
Teaching Resources
Practice Problemsto be added. |