
A First Course on Kinetics and Reaction Engineering

Example S6.2

Problem Purpose
This example illustrates the use of the MATLAB template file SolvBVDifS.m to solve a second order

boundary value ordinary differential equation with a singularity at the boundary where the independent
variable equals zero.

Problem Statement
Consider the ODE and boundary conditions given in equations (1) through (3). This ODE might

need to be solved in an analysis of the simultaneous reaction and diffusion within a porous, spherical

catalyst pellet. In these equations, CA represents the concentration of reactant A, r represents the radial

distance from the center of the catalyst particle, k represents a rate coefficient, Dea represents an effective

diffusivity, Rp represents the radius of the catalyst particle and CAs represents the concentration of A at the

outer surface of the catalyst particle. For present purposes k, Dea, Rp and CAs will be assumed to be

dimensionally consistent constants with the following values: Dea = 3.0 x 10-7; k = 0.02; CAs = 1.0 and Rp =

0.3. Once the solution has been found, the results should be used to calculate the steady state rate of

reaction per particle volume according to equation (4).

d 2CA

dr2 + 2
r
dCA

dr
− k
DeA

CA = 0 0 ≤ r ≤ Rp (1)

dCA

dr r=0

= 0 (2)

CA Rp() = CAs (3)

rate = − 3DeA

Rp

dCA

dr r=Rp

 (4)

Problem Analysis
Examination reveals that equation (1) contains no partial derivatives; it is an ordinary differential

equation. The boundary condition given in equation (2) applies at r = 0, while the boundary condition

given in equation (3) applies at r = Rp. Thus, the boundary conditions do not all apply at the same

boundary, and consequently this is a boundary value ODE problem. Further examination of the equations

reveals that CA is the dependent variable because it is the quantity that is differentiated. Similarly, r is the

independent variable because the derivatives in the ODE are all taken with respect to it. In the second

term of equation (1), r-1 appears, and this causes a singularity at the boundary where r = 0 (this term

goes to infinity). Under these conditions, the MATLAB template file SolvBVDifS.m can be used to solve

AFCoKaRE, Example S6.2 1

the differential equation. Doing so will require modification of the template file in seven locations. It will
also require that the second order ODE, equation (1), be converted to a set of two first order ODEs.

Problem Solution
The first thing we need to do is to re-write the second order ODE as a set of two, coupled first order

ODEs. Here, as I do so, I will also change the variable names so they match those used in the template

file. That is, I will define y1 as being equal to CA and x as being equal to r, as indicated in equations (4)

and (5). Next I introduce a second dependent variable, y2, and define it to equal the first derivative of CA

with respect to r, equation (6). Note that taking the derivative of both sides of equation (6) shows that the

second derivative of CA with respect to r is equal to the first derivative of y2 with respect to x, equation (7).

y1 ≡ CA (4)

x ≡ r (5)

y2 ≡
dCA

dr
= dy1
dx

 (6)

dy2
dx

= d
dx

dCA

dr
⎛
⎝⎜

⎞
⎠⎟ =

d
dr

dCA

dr
⎛
⎝⎜

⎞
⎠⎟ =

d 2CA

dr2
 (7)

Below, I duplicated equation (6) as equation (8) because it is one of the two first order ODEs that

will replace the second order ODE, equation (1). Next, I replaced the second derivative of CA with respect

to r in equation (1) with the first derivative of y2 with respect to x, per equation (7) and I replaced the first

derivative of CA with respect to r in equation (1) with y2, per equation (6). Doing so gives equation (9), the

other first order ODE that, together with equation (8), forms a set of two first order ODEs that are

equivalent to the original second order ODE, equation (1).

dy1
dx

= y2 (8)

dy2
dx

= − 2y2
x

+ k
DeA

y1 (9)

The second term in equation (9) introduces a singularity at the boundary where x = 0.

Consequently, the equations should be written in the form given in equation (10), so that the MATLAB

template file SolvBVDifS.m can be used to solve the ODEs. Comparing equations (8) and (9) to equation

(10) shows that they are already in the proper form with f1, f2, S11, S12, S21 and S22 defined as in equations

(11) and (12).

dyi
dx

= Sij
yj
xall j

∑ + fi x, y() (10)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.2 2

S1,1 = 0; S1,2 = 0; f1 x, y() = y2 (11)

S2,1 = 0; S2,2 = −2; f2 x, y() = k
DeA

y1 (12)

The boundary conditions must also be converted by replacing the first derivative of CA with respect

to r with y2, leading to equations (13) and (14). While transforming the boundary equations, I also wrote

them in the form used in the step-by-step instructions for use of SolvBVDifS.m: g y 0(), y Rp()() = 0 .

Equations (8), (9), (13) and (14) constitute a set of coupled first order ODEs and their boundary

conditions that are entirely equivalent to the original second order ODE and its boundary conditions,
equations (1) through (3).

dCA

dr r=0

= y2 0() = g1 y1 0(), y2 0(), y1 Rp(), y2 Rp()() = 0 (13)

y1 Rp()−CAs = g2 y1 0(), y2 0(), y1 Rp(), y2 Rp()() = 0 (14)

Continuing with the step-by-step instructions for using SolvBVDifS.m, a copy of SolvBVDifS.m was

saved in the working directory as S6_Example_2.m. The function declaration statement was changed so
that the function name was the same as the filename without the “.m” filetype. At the same time, the long

initial comment was changed to a shorter comment indicating the purpose of the modified template file.
The first required modification involves entering each constant that appears in the problem in consistent

units. This problem involves several constants: Dea = 3.0 x 10-7; k = 0.02; CAs = 1.0 and Rp = 0.3, so each

one is entered. All of these changes can be seen in Listing 1.

Listing 1. Modified version of SolvBVDifS.m after renaming and making the first required modification.

The second required modification involves entering the code to evaluate the functions f1 and f2 in

equations (11) and (12) and setting the corresponding rows of the column vector dydx equal to their

values. This modification appears within the internal function named bvodes. It is important to note that

% Modified version of the MATLAB template file SolvBVDifS.m used to solve
% Example 2 of Supplemental Unit S6 of "A First Course on Kinetics and
% Reaction Engineering."
%
function result = S6_Example_2
 % Known quantities and constants (in consistent units)
 Dea = 3.0E-7;
 k = 0.02;
 Rp = 0.3;
 CAs = 1.0;

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.2 3

the function, f2, does not include the term − 2y2
x

. That term will be added to f2 automatically by MATLAB

as long as we enter the elements of the singularity matrix, S , correctly. This will be done in a subsequent

required modification of SolvBVDifS.m. The resulting, modified version of bvodes is shown in Listing 2.

Listing 2. Internal function bvodes after making the second required modification.

The third required modification involves entering the code to evaluate the functions g1 and g2 in

equations (13) and (14) and setting the corresponding rows of the column vector res equal to their

values. This modification appears within the internal function named bvs. The comment at the start of that

internal function notes that the values of y at x = 0 are available in the column vector y_at_start and

the values of y at x = Rp are available in the column vector y_at_end. The resulting, modified version of

bvs is shown in Listing 3.

Listing 3. Internal function bvs after making the third required modification.

The fourth required modification is where the range of the independent variable is set and the

number of mesh points are chosen. All you need to do here is remove the comments at the end of the
three lines defining the variables and replace them with the corresponding value of the low end of the

range of x, the high end of the range of x, and the number of mesh points you want to use. In this problem

the range is from x = 0 to x = Rp, so I entered those values on the first two lines. I chose to use 20 mesh

points, but MATLAB may increase the number of mesh points if it needs to do so in order to achieve
sufficient accuracy. The resulting code is shown in Listing 4.

 % Function that evaluates the column vector f in dydx = S*y/x + f(x,y)
 function dydx = bvodes(x,y)
 dydx = [
 y(2)
 k/Dea*y(1)
];
 end % of internal function bvodes

 % Function that calculates the errors at the boundaries
 function res = bvs(y_at_start,y_at_end)
 % y_at_start is a column vector containing y values at the starting
 % x boundary and y_at_end is a column vector containing y values at
 % the ending x boundary.
 res = [
 y_at_start(2)
 y_at_end(1) - CAs
];
 end % of internal function bvs

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.2 4

Listing 4. Code resulting from the fourth required modification of SolvBVDifS.m.

The template file is set up so that a single value needs to be guessed for each dependent variable.

Essentially we just need to guess the average value of each dependent variable over the range from x = 0

to x = Rp. (It is possible to provide a guess that varies over the range from x = 0 to x = Rp. If you want or

need to do this, consult the MATLAB documentation.) As a guess for the average value of CA (which

equals y1), I’m just going to use the value at the external surface of the particle, CAs. As a guess for the

average value of y2, I’ll use the external concentration divided by the particle radius. (Remember, y2

represents the derivative of CA with respect to r; if the concentration went to zero at the particle center,

this guess would equal the average value of y2.) The guesses are entered as rows in the column vector

named yinit. The first row of yinit contains the guess for y1 and the second row contains the guess

for y2. The resulting code is shown in Listing 5.

Listing 5. Code resulting from the fifth required modification of SolvBVDifS.m.

The sixth required modification involves entering the singularity matrix. Specifically, the Sij elements

of the singularity matrix, equations (11) and (12), are entered row by row with the individual elements

separated by commas. Listing 6 shows the results of doing so.

Listing 6. Code resulting from the sixth required modification of SolvBVDifS.m.

The final required modification involves performing any calculations that use the results from

solving the ODEs. In the present problem, we want to use the results of solving the ODEs to calculate the

rate according to equation (4). As the comments in the code state, the variable result.x is a vector

containing the x values of the mesh points. I first get the index of the last mesh point, which corresponds

to x = r = Rp. This is necessary because MATLAB may have changed the number of mesh points to some

 % Set up the initial mesh
 x_range_low = 0;
 x_range_high = Rp;
 n_mesh_points = 20;

 % Guesses
 yinit = [
 CAs
 CAs/Rp
];

 % Provide the matrix, S, that MATLAB uses to handle singularities
 S = [
 0,0
 0,-2
];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.2 5

number different than the twenty mesh points I originally specified. MATLAB will do this, when necessary,

to ensure sufficient accuracy of the results. The variable result.y is a matrix where the columns

correspond to the dependent variables (the first column is y1 and the second column is y2); the rows

contain the values of those variables at each of the mesh points. Since y2 is equal to
dCA

dr
, the last

element of the second column of result.y will equal
dCA

dr
 at r = Rp. I can then use that value to

calculate the rate using equation (4), as requested. The resulting code is shown in Listing 7.

Listing 7. Code resulting from the seventh and final required modification of SolvBVDifS.m.

That completes the required modifications, so once the file is saved to make the changes
permanent, it can be executed by typing the first line shown in Listing 8 at the MATLAB command prompt.

Examining the output, also shown in Listing 8, you can see that MATLAB increased the number of mesh

points. This is apparent because I specified 20 mesh points, but the x, y and yp vectors have 48

elements. The code I wrote (seventh required modification) anticipated that this might happen, so the rate
reported in the listing should be correct. (Note: in case you were worried, the rate is negative because A is

being consumed by the reaction.)

Listing 8. Results of executing the modified template file, S6_Example_2.m.

 % Calculate the steady state rate:
 lastPoint = length(result.x);
 rate = (-3*Dea/Rp)*result.y(2,lastPoint)

>> result = S6_Example_2

rate =

 -7.7460e-04

result =

 solver: 'bvp4c'
 x: [1x48 double]
 y: [2x48 double]
 yp: [2x48 double]
 stats: [1x1 struct]

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.2 6

