
A First Course on Kinetics and Reaction Engineering

Example S6.2

Problem Purpose
This example illustrates the use of the MATLAB template file SolvBVDifS.m to solve a second order 

boundary value ordinary differential equation with a singularity at the boundary where the independent 
variable equals zero.

Problem Statement
Consider the ODE and boundary conditions given in equations (1) through (3). This ODE might 

need to be solved in an analysis of the simultaneous reaction and diffusion within a porous, spherical 

catalyst pellet. In these equations, CA represents the concentration of reactant A, r represents the radial 

distance from the center of the catalyst particle, k represents a rate coefficient, Dea represents an effective 

diffusivity, Rp represents the radius of the catalyst particle and CAs represents the concentration of A at the 

outer surface of the catalyst particle. For present purposes k, Dea, Rp and CAs will be assumed to be 

dimensionally consistent constants with the following values: Dea = 3.0 x 10-7; k = 0.02; CAs = 1.0 and Rp = 

0.3. Once the solution has been found, the results should be used to calculate the steady state rate of 

reaction per particle volume according to equation (4).

d 2CA

dr2 + 2
r
dCA
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− k
DeA

CA = 0     0 ≤ r ≤ Rp  (1)

dCA

dr r=0

= 0  (2)

CA Rp( ) = CAs  (3)

rate = − 3DeA

Rp

dCA

dr r=Rp

 (4)

Problem Analysis
Examination reveals that equation (1) contains no partial derivatives; it is an ordinary differential 

equation. The boundary condition given in equation (2) applies at r = 0, while the boundary condition 

given in equation (3) applies at r = Rp. Thus, the boundary conditions do not all apply at the same 

boundary, and consequently this is a boundary value ODE problem. Further examination of the equations 

reveals that CA is the dependent variable because it is the quantity that is differentiated. Similarly, r is the 

independent variable because the derivatives in the ODE are all taken with respect to it. In the second 

term of equation (1), r-1 appears, and this causes a singularity at the boundary where r = 0 (this term 

goes to infinity). Under these conditions, the MATLAB template file SolvBVDifS.m can be used to solve 
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the differential equation. Doing so will require modification of the template file in seven locations. It will 
also require that the second order ODE, equation (1), be converted to a set of two first order ODEs.

Problem Solution
The first thing we need to do is to re-write the second order ODE as a set of two, coupled first order 

ODEs. Here, as I do so, I will also change the variable names so they match those used in the template 

file. That is, I will define y1 as being equal to CA and x as being equal to r, as indicated in equations (4) 

and (5). Next I introduce a second dependent variable, y2, and define it to equal the first derivative of CA 

with respect to r, equation (6). Note that taking the derivative of both sides of equation (6) shows that the 

second derivative of CA with respect to r is equal to the first derivative of y2 with respect to x, equation (7). 

y1 ≡ CA  (4)

x ≡ r  (5)

y2 ≡
dCA

dr
= dy1
dx

 (6)

dy2
dx

= d
dx
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dr
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d 2CA

dr2
 (7)

Below, I duplicated equation (6) as equation (8) because it is one of the two first order ODEs that 

will replace the second order ODE, equation (1). Next, I replaced the second derivative of CA with respect 

to r in equation (1) with the first derivative of y2 with respect to x, per equation (7) and I replaced the first 

derivative of CA with respect to r in equation (1) with y2, per equation (6). Doing so gives equation (9), the 

other first order ODE that, together with equation (8), forms a set of two first order ODEs that are 

equivalent to the original second order ODE, equation (1).

dy1
dx

= y2  (8)

dy2
dx

= − 2y2
x

+ k
DeA

y1  (9)

The second term in equation (9) introduces a singularity at the boundary where x = 0. 

Consequently, the equations should be written in the form given in equation (10), so that the MATLAB 

template file SolvBVDifS.m can be used to solve the ODEs.  Comparing equations (8) and (9) to equation 

(10) shows that they are already in the proper form with f1, f2, S11, S12, S21 and S22 defined as in equations 

(11) and (12).

dyi
dx

= Sij
yj
xall j

∑ + fi x, y( )  (10)
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S1,1 = 0;     S1,2 = 0;     f1 x, y( ) = y2  (11)

S2,1 = 0;     S2,2 = −2;    f2 x, y( ) = k
DeA

y1  (12)

The boundary conditions must also be converted by replacing the first derivative of CA with respect 

to r with y2, leading to equations (13) and (14). While transforming the boundary equations, I also wrote 

them in the form used in the step-by-step instructions for use of SolvBVDifS.m: g y 0( ), y Rp( )( ) = 0 . 

Equations (8), (9), (13) and (14) constitute a set of coupled first order ODEs and their boundary 

conditions that are entirely equivalent to the original second order ODE and its boundary conditions, 
equations (1) through (3).

dCA

dr r=0

= y2 0( ) = g1 y1 0( ), y2 0( ), y1 Rp( ), y2 Rp( )( ) = 0  (13)

y1 Rp( )−CAs = g2 y1 0( ), y2 0( ), y1 Rp( ), y2 Rp( )( ) = 0  (14)

Continuing with the step-by-step instructions for using SolvBVDifS.m, a copy of SolvBVDifS.m was 

saved in the working directory as S6_Example_2.m. The function declaration statement was changed so 
that the function name was the same as the filename without the “.m” filetype. At the same time, the long 

initial comment was changed to a shorter comment indicating the purpose of the modified template file. 
The first required modification involves entering each constant that appears in the problem in consistent 

units. This problem involves several constants: Dea = 3.0 x 10-7; k = 0.02; CAs = 1.0 and Rp = 0.3, so each 

one is entered. All of these changes can be seen in Listing 1.

Listing 1. Modified version of SolvBVDifS.m after renaming and making the first required modification.

The second required modification involves entering the code to evaluate the functions f1 and f2 in 

equations (11) and (12) and setting the corresponding rows of the column vector dydx equal to their 

values. This modification appears within the internal function named bvodes. It is important to note that 

% Modified version of the MATLAB template file SolvBVDifS.m used to solve
% Example 2 of Supplemental Unit S6 of "A First Course on Kinetics and
% Reaction Engineering."
%
function result = S6_Example_2
    % Known quantities and constants (in consistent units)
    Dea = 3.0E-7;
    k = 0.02;
    Rp = 0.3;
    CAs = 1.0;
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the function, f2, does not include the term − 2y2
x

. That term will be added to f2 automatically by MATLAB 

as long as we enter the elements of the singularity matrix, S , correctly. This will be done in a subsequent 

required modification of SolvBVDifS.m. The resulting, modified version of bvodes is shown in Listing 2.

Listing 2. Internal function bvodes after making the second required modification.

The third required modification involves entering the code to evaluate the functions g1 and g2 in 

equations (13) and (14) and setting the corresponding rows of the column vector res equal to their 

values. This modification appears within the internal function named bvs. The comment at the start of that 

internal function notes that the values of y at x = 0 are available in the column vector y_at_start and 

the values of y at x = Rp are available in the column vector y_at_end. The resulting, modified version of 

bvs is shown in Listing 3.

Listing 3. Internal function bvs after making the third required modification.

The fourth required modification is where the range of the independent variable is set and the 

number of mesh points are chosen. All you need to do here is remove the comments at the end of the 
three lines defining the variables and replace them with the corresponding value of the low end of the 

range of x, the high end of the range of x, and the number of mesh points you want to use. In this problem 

the range is from x = 0 to x = Rp, so I entered those values on the first two lines. I chose to use 20 mesh 

points, but MATLAB may increase the number of mesh points if it needs to do so in order to achieve 
sufficient accuracy. The resulting code is shown in Listing 4.

    % Function that evaluates the column vector f in dydx = S*y/x + f(x,y)
    function dydx = bvodes(x,y)
        dydx = [
            y(2)
            k/Dea*y(1)
        ];
    end % of internal function bvodes

    % Function that calculates the errors at the boundaries
    function res = bvs(y_at_start,y_at_end)
        % y_at_start is a column vector containing y values at the starting
        % x boundary and y_at_end is a column vector containing y values at
        % the ending x boundary.
        res = [
            y_at_start(2)
            y_at_end(1) - CAs
        ];
    end % of internal function bvs
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Listing 4. Code resulting from the fourth required modification of SolvBVDifS.m.

The template file is set up so that a single value needs to be guessed for each dependent variable. 

Essentially we just need to guess the average value of each dependent variable over the range from x = 0 

to x = Rp. (It is possible to provide a guess that varies over the range from x = 0 to x = Rp. If you want or 

need to do this, consult the MATLAB documentation.) As a guess for the average value of CA (which 

equals y1), I’m just going to use the value at the external surface of the particle, CAs. As a guess for the 

average value of y2, I’ll use the external concentration divided by the particle radius. (Remember, y2 

represents the derivative of CA with respect to r; if the concentration went to zero at the particle center, 

this guess would equal the average value of y2.) The guesses are entered as rows in the column vector 

named yinit. The first row of yinit contains the guess for y1 and the second row contains the guess 

for y2. The resulting code is shown in Listing 5.

Listing 5. Code resulting from the fifth required modification of SolvBVDifS.m.

The sixth required modification involves entering the singularity matrix. Specifically, the Sij elements 

of the singularity matrix, equations (11) and (12), are entered row by row with the individual elements 

separated by commas. Listing 6 shows the results of doing so.

Listing 6. Code resulting from the sixth required modification of SolvBVDifS.m.

The final required modification involves performing any calculations that use the results from 

solving the ODEs. In the present problem, we want to use the results of solving the ODEs to calculate the 

rate according to equation (4). As the comments in the code state, the variable result.x is a vector 

containing the x values of the mesh points. I first get the index of the last mesh point, which corresponds 

to x = r = Rp. This is necessary because MATLAB may have changed the number of mesh points to some 

    % Set up the initial mesh
    x_range_low = 0;
    x_range_high = Rp;
    n_mesh_points = 20;

    % Guesses
    yinit = [
        CAs
        CAs/Rp
    ];

    % Provide the matrix, S, that MATLAB uses to handle singularities
    S = [
        0,0
        0,-2
    ];
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number different than the twenty mesh points I originally specified. MATLAB will do this, when necessary, 

to ensure sufficient accuracy of the results. The variable result.y is a matrix where the columns 

correspond to the dependent variables (the first column is y1 and the second column is y2); the rows 

contain the values of those variables at each of the mesh points. Since y2 is equal to 
dCA

dr
, the last 

element of the second column of result.y will equal 
dCA

dr
 at r = Rp. I can then use that value to 

calculate the rate using equation (4), as requested. The resulting code is shown in Listing 7.

Listing 7. Code resulting from the seventh and final required modification of SolvBVDifS.m.

That completes the required modifications, so once the file is saved to make the changes 
permanent, it can be executed by typing the first line shown in Listing 8 at the MATLAB command prompt. 

Examining the output, also shown in Listing 8, you can see that MATLAB increased the number of mesh 

points. This is apparent because I specified 20 mesh points, but the x, y and yp vectors have 48 

elements. The code I wrote (seventh required modification) anticipated that this might happen, so the rate 
reported in the listing should be correct. (Note: in case you were worried, the rate is negative because A is 

being consumed by the reaction.)

Listing 8. Results of executing the modified template file, S6_Example_2.m.

    % Calculate the steady state rate:
    lastPoint = length(result.x);
    rate = (-3*Dea/Rp)*result.y(2,lastPoint)

>> result = S6_Example_2

rate =

  -7.7460e-04

result = 

    solver: 'bvp4c'
         x: [1x48 double]
         y: [2x48 double]
        yp: [2x48 double]
     stats: [1x1 struct]
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