
A First Course on Kinetics and Reaction Engineering

Example S5.1

Problem Purpose
This example illustrates the use of the MATLAB template file SolvBVDif.m to solve a second order

boundary value ordinary differential equation.

Problem Statement
Solve the boundary value ODE in equation (1) with the boundary conditions specified in equations

(2) and (3) to find the value of CA at z = L, and make a plot of CA versus z. Further assume that D, us, k,

K, CA0 and L are known constants with the following values (in dimensionally consistent units): D = 8.0 x

10-6; us = 0.01; k = 0.012; K = 1.0; CA0 = 1.0 and L = 1.25. As equation (1) indicates, the ODE applies

over the range of z from 0 to L.

−D d 2CA

dz2 + us
dCA

dz
= − k + k

K
⎛
⎝⎜

⎞
⎠⎟CA −

k
K
CA

0⎛
⎝⎜

⎞
⎠⎟

 0 ≤ z ≤ L (1)

usCA 0()− D dCA

dz z=0

= usCA
0 (2)

dCA

dz z=L

= 0 (3)

Problem Analysis
Examination reveals that equation (1) contains no partial derivatives; it is an ordinary differential

equation. The boundary condition given in equation (2) applies at z = 0, while the boundary condition

given in equation (3) applies at z = L. Thus, the boundary conditions do not all apply at the same

boundary, and consequently this is a boundary value ODE problem. Finally, z-1 does not appear in the

equation, so there is no singularity at the boundary where z = 0. Under these conditions, the MATLAB

template file, SolvBVDif.m can be used to solve the ODE. In order to do so, the second order ODE will
need to be converted into a set of two first order ODEs and the template file will have to be modified in six

places.

Problem Solution
The first thing we need to do is to re-write the second order ODE as a set of two, coupled first order

ODEs. Equation (1) includes the second derivative of CA with respect to z, so it is a second order ODE

and will need to be converted into a set of two first-order ODEs. Here, as I do so, I will also change the

variable names so they match those used in the template file. That is, I will define y1 as being equal to CA

and x as being equal to z, as indicated in equations (4) and (5). Next I introduce a second dependent

AFCoKaRE, Example S6.1 1

variable, y2, and define it to equal the first derivative of CA with respect to z, equation (6). Note that taking

the derivative of both sides of equation (6) shows that the second derivative of CA with respect to z is

equal to the first derivative of y2 with respect to x, equation (7).

y1 ≡ CA (4)

x ≡ z (5)

y2 ≡
dCA

dz
= dy1
dx

 (6)

dy2
dx

= d
dx

dCA

dz
⎛
⎝⎜

⎞
⎠⎟ =

d
dz

dCA

dz
⎛
⎝⎜

⎞
⎠⎟ =

d 2CA

dz2
 (7)

Below, I duplicated equation (6) as equation (8) because it is one of the two first order ODEs that

will replace the second order ODE, equation (1). Next, I replaced the second derivative of CA with respect

to z in equation (1) with the first derivative of y2 with respect to x, per equation (7) and I replaced the first

derivative of CA with respect to z in equation (1) with y2, per equation (6). Doing so gives equation (9), the

other first order ODE that, together with equation (8), forms a set of two first order ODEs that are
equivalent to the original second order ODE, equation (1). Similarly, the boundary conditions are

converted by replacing the first derivative of CA with respect to z with y2, leading to equations (10) and

(11). Equations (8) through (11) constitute a set of coupled first order ODEs and their boundary conditions
that are entirely equivalent to the original second order ODE and its boundary conditions, equations (1)

through (3).

dy1
dx

= f1 x, y1, y2() = y2 (8)

dy2
dx

= f2 x, y1, y2() = 1
D

k + k
K

⎛
⎝⎜

⎞
⎠⎟ y1 + usy2 −

k
K
CA
0⎛

⎝⎜
⎞
⎠⎟

 (9)

usy1 0()− Dy2 0()− usCA
0 = g1 y1 0(), y2 0(), y1 L(), y2 L()() = 0 (10)

y2 L() = g2 y1 0(), y2 0(), y1 L(), y2 L()() = 0 (11)

Examination of equations (8) and (9) shows that x-1 does not appear in the equations, so there still

is no singularity at the boundary where x = 0, so SolvBVDif.m, still can be used to solve them. Here I will

do so by following the step-by-step instructions for using SolvBVDif.m that are provided with this unit. A
copy of SolvBVDif.m was saved in the working directory as S6_Example_1.m. The function declaration

statement was changed so that the function name was the same as the filename without the “.m” filetype.
At the same time, the long initial comment was changed to a shorter comment indicating the purpose of

the modified template file. The first required modification involves entering each constant that appears in

the problem, in consistent units. This problem involves several constants: D = 8.0 x 10-6; us = 0.01; k =

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 2

0.012; K = 1.0; CA0 = 1.0 and L = 1.25, so each one is declared and assigned the appropriate value. All of

these changes can be seen in Listing 1.

Listing 1. Modified version of SolvBVDif.m after renaming and making the first required modification.

The second required modification involves entering the code to evaluate the functions f1 and f2 in

equations (8) and (9) and setting the corresponding rows of the column vector dydx equal to their values.

This modification appears within the internal function named bvodes. The resulting, modified version of

bvodes is shown in Listing 2.

Listing 2. Internal function bvodes after making the second required modification.

The third required modification involves entering the code to evaluate the functions g1 and g2 in

equations (10) and (11) and setting the corresponding rows of the column vector res equal to their

values. This modification appears within the internal function named bvs. The comment at the start of that

internal function notes that the values of y at x = 0 are available in the column vector y_at_start and

the values of y at x = L are available in the column vector y_at_end. The resulting, modified version of

bvs is shown in Listing 3.

% Modified version of the MATLAB template file SolvBVDif.m that was used to
% solve Example 1 of Supplemental Unit S6 of "A First Course on Kinetics
% and Reaction Engineering."
%
function result = S6_Example_1
 % Known quantities and constants (in consistent units)
 D = 8.0E-6;
 us = 0.01;
 k = 0.012;
 K = 1.0;
 CA0 = 1.0;
 L = 1.25;

 % Function that evaluates the derivatives
 function dydx = bvodes(x,y)
 dydx = [
 y(2)
 (1/D)*((k+k/K)*y(1)+us*y(2)-k*CA0/K)
];
 end % of internal function bvodes

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 3

Listing 3. Internal function bvs after making the third required modification.

The fourth required modification is where the range of the independent variable is set and the

number of mesh points are chosen. All you need to do here is remove the comments at the end of the
three lines defining the variables and replace them with the corresponding value of the low end of the

range of x, the high end of the range of x, and the number of mesh points you want to use. In this problem

the range is from x = 0 to x = L, so I entered those values on the first two lines. I chose to use 40 mesh

points, but MATLAB may increase the number of mesh points if it needs to do so in order to achieve
sufficient accuracy. The resulting code is shown in Listing 4.

Listing 4. Code resulting from the fourth required modification of SolvBVDif.m.

The template file is set up so that a single value needs to be guessed for each dependent variable.

Essentially we just need to guess the average value of each dependent variable over the range from x = 0

to x = L. (It is possible to provide a guess that varies over the range from x = 0 to x = L. If you want or

need to do this, consult the MATLAB documentation.) It was noted previously that the first dependent

variable corresponds to the concentration of A. Since this is just a guess, I simply guessed that the

average concentration of A is equal to CA0. The second dependent variable corresponds to the derivative

of CA with respect to z. If the A was completely converted over the range of x, then on average, the

derivative would equal the negative of the concentration divided by the distance, L, and that’s what I used

as a guess. These guesses are entered in the column vector named yinit. The first row of yinit

contains the guess for y1 and the second row contains the guess for y2. The resulting code is shown in

Listing 5.

 % Function that calculates the errors at the boundaries
 function res = bvs(y_at_start,y_at_end)
 % y_at_start is a column vector containing y values at the starting
 % x boundary and y_at_end is a column vector containing y values at
 % the ending x boundary.
 res = [
 us*y_at_start(1)-D*y_at_start(2)-us*CA0
 y_at_end(2)
];

 end % of internal function bvs

 % Set up the initial mesh
 x_range_low = 0.0;
 x_range_high = L;
 n_mesh_points = 40;

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 4

Listing 5. Code resulting from the fifth required modification of SolvBVDif.m.

The final required modification involves performing any calculations that use the results from

solving the ODEs. In this problem we are asked for the value of CA (or y1) at z (or x) equal to L. As the

comments in the template file indicate, the variable result.x is a vector containing the x values of the

mesh points. I first get the index of the last mesh point, which corresponds to the end of the reactor where

x = L. This is necessary because MATLAB may change the number of mesh points from what I originally

set up. MATLAB does this to ensure that the result is accurate. (See the MATLAB documentation if you

wish to change the accuracy of the results.) The variable result.y is a matrix where the columns

correspond to the dependent variables (the first column is y1 and the second column is y2); the rows

contain the values of those variables at each of the mesh points. Here I simply print out the value of y1,

that is the concentration of A, at the last mesh point where x = L. (It will print out when the function is

executed because I didn’t put a semicolon at the end of the line.) Finally, I entered code to generate a

very simple plot of the concentration of A as a function of x. Consult the MATLAB documentation to learn

how to make the plot more attractive, add a legend, etc. The resulting code is shown in Listing 6.

Listing 6. Code resulting from the sixth and final required modification of SolvBVDif.m.

That completes the required modifications, so once the file is saved to make the changes
permanent, it can be executed by typing the first line shown in Listing 7 at the MATLAB command prompt.

Examining the output, also shown in Listing 7, you can see that MATLAB increased the number of mesh

points. This is apparent because I specified 40 mesh points, but the x, y and yp vectors have 48

elements. As the listing shows, the 40th mesh point corresponds to x = 1.2402, not 1.25. The 48th mesh

point corresponds to x = 1.25 = L. The code I wrote (sixth required modification) anticipated that this

might happen, and as you can see, the value that was reported for CAf is indeed equal to CA (y1) for

mesh point 48, not mesh point 40. In addition to the output seen in Listing 7, a plot of CA vs. z (y1 vs x)

was also generated. It is shown in Figure 1.

 % Guesses
 yinit = [
 CA0
 -CA0/L
];

 % Calculate the value of CA (y(1)) at z (x) = L
 lastPoint = length(result.x);
 CAf = result.y(1,lastPoint)
 % Plot the concentration as a function of axial position
 plot(result.x,result.y(1,:))
 xlabel('Axial Position')
 ylabel('Concentration of A')

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 5

Listing 7. Results of executing the modified template file, S6_Example_1.m and additional MATLAB
command line entries.

>> result = S6_Example_1

CAf =

 0.5250

result =

 solver: 'bvp4c'
 x: [1x48 double]
 y: [2x48 double]
 yp: [2x48 double]
 stats: [1x1 struct]

>> result.x(48)

ans =

 1.2500

>> result.x(40)

ans =

 1.2402

>> result.y(1,48)

ans =

 0.5250

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 6

Figure 1. Plot of CA (y1) versus z (x).

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S6.1 7

