
A First Course on Kinetics and Reaction Engineering

Supplemental Unit S4. Numerically Fitting Models to Data

Defining the Problem
Many software routines for fitting a model to experimental data can only be used when the model is 

of a pre-defined mathematical form. The more common pre-defined forms are linear (see Supplemental 
Unit S3), polynomial, exponential and logarithmic. This supplemental unit describes how to fit models that 

do not have one of the pre-determined mathematical forms to experimental data. Specifically, it considers 
fitting five kinds of models to corresponding data sets.

1. The single response variable is an explicit function of the set variables.
2. The single response variable is computed after first solving a set of non-

linear equations.
3. The single response variable is computed after first solving a set of initial 

value ordinary differential equations.
4. The multiple response variables are computed after first solving a set of 

non-linear equations, and a complete data set1 is used for fitting.
5. The multiple response variables are computed after first solving a set of 

initial value ordinary differential equations, and a complete data set1 
is used for fitting.

Information and Data Required for Numerical Solution
Fewer mathematics programs have routines for the type of fitting considered in this supplemental 

unit. If a routine is available for fitting a user-provided single response model to experimental data, it will 
most likely require you, at the minimum, to provide the following input information and data:

• a set of experimental data points, each of which consists of a value for the response variable, ŷ, 
and corresponding values for each of the set variables x1 through xnset

• a guess for the value of each unknown parameter that appears in the model

• code that calculates the model-predicted value of the response variable, given values for the 

parameters and values for the set variables

If the calculation of the model-predicted value of the response variable requires the prior numerical 

solution of a set of non-linear equations, the code provided above will need to call additional numerical 
routines for solving those equations (see Supplemental Unit S2). In that case, you will additionally need to 

provide the following:

• code that evaluates the set of non-linear equations to be solved, given values for the unknowns

• code that provides a guess for the values of the unknowns
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1 For present purposes, a complete multiple response data set is one where the value of every response 
variable was measured in every experiment.



If the calculation of the model-predicted value of the response variable requires the prior numerical 

solution of a set of initial value ordinary differential equations, the code provided above will need to call 
additional numerical routines for solving initial value ordinary differential equations (see Supplemental 

Unit S5). In that case, you will additionally need to provide the following:

• code that evaluates the derivatives in the set of initial value ordinary differential equations given 

values of the independent and dependent variables

• code that provides the initial values of the independent and dependent variables

• code that provides the final value of the independent variable

Once the required input has been provided, the software can be expected to return the best value 

for each parameter in the model, the value of the correlation coefficient, r2, and some measure of the 

uncertainty in the value of each parameter (typically either the standard error or the 95% confidence 

interval). If the software does not generate them, the results can be used to generate a model plot (when 

there is only one set variable, x) or a parity plot and residuals plots (when there are two or more set 

variables) that can be used to assess how accurately the model represents the data.

I am not aware of mathematics software for fitting multiple response models to data. For the two 
situations considered in this supplemental unit (4 and 5 in the list under “Defining the Problem,” above), 

template files are provided that require the same input as the corresponding single response models. 
However, the template files only return the best values for the model parameters and the plots; the 

uncertainties and the correlation coefficient are not computed.

Overview of the Numerical Method
As discussed in Supplemental Unit S3, when a model for an experiment is used to calculate the 

response variable, yl, for data point l by substitution of the corresponding xi,l values for that data point, it 

is not expected to yield the exact same value as the experimentally measured response, ŷl. Instead, due 

to experimental uncertainty, etc., it is expected that there will be an error (also called a residual), εl, as 

defined in equation (1).

  ε l = ŷl − yl  (1)

The model is fit to the data by adjusting the values of the parameters so as to minimize the 

aggregate error over all of the data points. The overall error or objective function, Φ, for single response 

data is taken to equal the sum over all of the experimental data points of the squares of the errors, 

equation (2), where g represents the model equation and the θi represent the model parameters. Using 

the squares of the errors prevents positive and negative errors from offsetting each other.

 
Φ = ε l

2

l=1

ne

∑ = ŷl − yl( )2
l=1

ne

∑ = ŷl − g x1,l , x2,l ,!, xns ,l ,θ1,θ2,!,θnp( )( )2
l=1

ne

∑  (2)
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The parameters, θ, in equation (2) are to be chosen so that the resulting value of Φ is a minimum. 

When that is true, the partial derivative of Φ with respect to each of the parameters will be equal to zero. 

Equation (3) expresses this requirement for any one parameter θk. By applying this criterion to each 

parameter, a set of np equations can be generated, and those equations can be solved simultaneously to 

find the “best” values of the np parameters.

  

∂Φ
∂θk

= 0  (3)

That is the approach described and used in Unit S3 for the situation where the function g is linear. It 

can be applied equally well to explicit non-linear models. Indeed, for some common non-linear equations 

(exponentials, logarithms, polynomials, power series, etc.), expressions for the best values of the 
parameters have been derived in that way and programmed into software such as MATLAB and Excel. 
For the non-linear equations where that has been done, the regression analysis is performed exactly as 

described in Unit S3, except that a pre-programmed function for the desired non-linear model is called 

instead of a function for a linear model. This situation will not be considered here.
If equations for the parameters have not been derived as described above and pre-programmed 

into available software, you have two options for performing the regression analysis. The first is to 

manually take the derivatives in equation (3) for every parameter in the model you are considering and 

then solve the resulting set of equations for the parameter values. That is a tedious process; a new set of 
derivatives must be generated for each model that is considered. A less-demanding alternative approach 
is to minimize equation (2) numerically. This is the approach that is utilized in this supplemental unit.

With this approach, the model does not need to be an explicit expression for the value of the 

response variable, because it is not necessary to substitute it into the objective function and analytically 
take the derivative of the result. As a consequence, the model can take the form of a set of differential or 
non-differential equations that are solved numerically (see Supplemental Units S2 and S5). This can be 

quite advantageous for the analysis of kinetics data because the reactor design equations are typically 

sets of initial value ordinary differential equations or sets of non-linear equations.
There are a number of different methods for the numerical minimization of a function. Most of them 

are variations on a scheme where one begins with a guess for the values of parameters. Using that 

guess, the objective function is evaluated to find the value of Φ. The guessed parameter values are then 

perturbed somehow, and the value of Φ corresponding to the perturbed parameters is calculated. The two 

values of Φ are then compared, and whichever of the two parameter sets gave the lower value of Φ is 

taken as the new guess. This process is repeated over and over, typically until one of three things 

happens: a maximum number of iterations occurs, the value of the objective function is decreasing by 
less than some minimum amount or the values of the parameters are changing by less than some 
minimum amount. The maximum number of iterations and the minimum change amounts can typically be 

specified as options, but reasonable default values are supplied when values are not specified. The main 
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difference between the different methods for numerical minimization involve the logic used to perturb the 
parameter guesses.

One thing to note about numerical minimization is that the minimization process might stop before 
the function has been fully minimized. For example, the maximum number of iterations might be reached 

before the minimum had been located. Another way to say this is that the solution might not be fully 
converged. For this reason, it is always a good idea to take the parameters that are found by numerical 

minimization and restart the minimization process using them as the new guess. If the new minimization 
generates different parameter values, then the original result probably was not fully converged. Thus, the 

parameters found by numerical minimization should be used as guesses and the minimization process 
should be repeated until the values of the parameters stop changing. This is a good indication that the 

minimization process has converged.
There is one other significant difference between 

numerical minimization and the analytical approach. It 
is possible that the objective function, equation (2), 

may have multiple local minima and maxima. For 
example, Figure 1 shows an objective function that 

displays a local minimum and a global minimum. The 
analytical approach can be implemented so it locates 

the global minimum and returns the corresponding 
parameter values. In contrast, numerical minimization 

will converge to only one minimum. That minimum 
could be the desired global minimum, but it could also 

be a local minimum. For this reason, it is usually 
advisable, when using numerical minimization 

methods, to perform the converged minimization a 
number of times, supplying significantly different initial 

guesses for the parameters each time. Then, if more 
than one converged minimum is located you will be 

able to determine which has the lowest value of the 
objective function.

In the scenario just described, you will never be absolutely certain that you have identified the 
global minimum of the objective function. At some point you need to examine the best set of parameters 

that you have found and decide whether they are physically reasonable. Then you need to examine how 
well the model fits the data. If the parameter values are physically reasonable and the model fits the data 

very well, it probably isn’t advisable to continue looking for solutions where the objective function is 
smaller still.

Finally, as noted in Unit 16, equation (2) cannot be used as the objective function when fitting 
multiple response data, and the proper objective function to use is not always obvious. The template files 

provided with this supplemental unit for fitting multiple response models to data use the determinant 
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Figure S3.1. Example of an objective function 
with a local minimum and a global minimum.



objective function presented in equation (4), where the errors are defined by equation (5). As noted in Unit 
16, this objective function is only appropriate if a complete data set is being used, i. e. if every response 

variable was measured in every experiment. The statistics associated with calculating uncertainties and 
correlation coefficients for multiple response models are more involved and have not been incorporated in 

the template files provided with this supplemental unit for fitting multiple response data.

 

Φ =

ε1 j( )2

all j
∑ ε1 jε2 j

all j
∑ ! ε1 jεnj

all j
∑

ε1 jε2 j
all j
∑ ε2 j( )2

all j
∑ ! ε2 jεnj

all j
∑

" " # "

ε1 jεnj
all j
∑ ε2 jεnj

all j
∑ ! εnj( )2

all j
∑

 (4)

ε ij = yi,model − yi,expt.( ) j  (5)

MATLAB Template Files

A function named nlinfit is available in MATLAB for performing non-linear equation fitting by 

numerical minimization of the sum of the squares of the errors for single response data. In other words, 

the function nlinfit uses equation (2) as the objective function and minimizes it numerically. When you 

use nlinfit, you must pass to it, as arguments, a guess for the value of each of the parameters in the 

model, the experimental values of the set variables for all of the data points, the corresponding 

experimentally measured values of the response variable for all of the data points and the name of a 
function (technically a function handle). You also must provide that function separately. It must take a set 

of parameter values and the experimental values of the set variables as arguments, and it must return the 
corresponding values of the response variable that are predicted by the model for the given input. If the 

calculation of the response variable involves solving a set of ordinary differential equations or a set of 
non-linear equations, additional MATLAB functions will need to be called. Those functions are identified 

and discussed in Supplemental Units S2 and S5.

A second function named nlparci is available in MATLAB for computing the confidence intervals 

for the model parameters that are returned by nlinfit. Several other functions, most notably the 

function named plot, are available for creating model plots, parity plots and residuals plots. If you are 

going to use MATLAB to fit non-linear model equations to experimental data, you are strongly encouraged 
to read the MATLAB documentation for the functions mentioned; no further details will be presented here.

When a multiple response model is being fit to experimental data, nlinfit cannot be used 

because equation (2) is not the proper objective function. MATLAB does provide a function named 

fminsearch that can be used, though. The difference is that fminsearch simply minimizes a function 
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with respect to variables that appear in that function. The user is responsible for providing the function to 
be minimized and for identifying the variables to be used in minimizing it. Hence, to use it in the present 

situation a subroutine that calculates Φ using equation (4) must be provided, with the model parameters 

as the variables to be used in minimizing it. That is, fminsearch will receive as arguments a guess for 

the parameters and the name of a function that evaluates that objective function. That function can have 

only one argument, namely a column vector containing a set of model parameters. As a result, some 
additional coding is required in order to provide the values of the set and experimental response variables 

to that subroutine.
This course is about kinetics and reaction engineering, not computer programming. Therefore 

MATLAB template files have been created to automate as much of the fitting process as possible. 
However, it isn’t possible to completely remove the need for programming. Consequently, each of the 

template files to be introduced here does require some modification each time it is used. The required 
modifications are clearly indicated in the template files, they are described in How-To files that 

accompany this unit and they are illustrated in Examples S4.1 through S4.5.

FitNonlinSR.m can be used to fit an explicit, non-linear model to single response data where 

arbitrary data point l is of the form 
 
ŷl , x1,l , x2,l ,!, xns ,l( );l = 1…ndata( ) . In particular, it must be possible 

to solve the model equation explicitly for the response variable, y, as in equation (6), so that f is a function 

of the set variables, xi, and parameters, θk, but not of the response variable. The function f is assumed to 

be non-linear. Though the approach described here will work in situations where f is linear, there are 

better methods available for linear models (see Supplemental Unit S3). 

 
y = f x1, x2,!, xns ,θ1,θ2,!,θnp( )  (6)

FitNumAlgSR.m can be used to fit a model of the form given in equation (7) to a set of single 

response experimental data points
 
ŷl , x1,l , x2,l ,!, xns ,l( );l = 1…ndata( ) , by first solving a set of non-linear 

equations of the form given in equations (8) for the unknowns u.

 
y = f u1,u2,!,unu , x1, x2,!, xns( )  (7)

 

g1 u1,u2,!,unu ,θ1,θ2,!,θnp
;x1, x2,!xns( ) = 0

g2 u1,u2,!,unu ,θ1,θ2,!,θnp
;x1, x2,!xns( ) = 0

"

gnu u1,u2,!,unu ,θ1,θ2,!,θnp
;x1, x2,!xns( ) = 0

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

 (8)

FitNumDifSR.m can be used to fit a model of the form given in equation (7) to a set of single 

response experimental data points
 
ŷl , x1,l , x2,l ,!, xns ,l( );l = 1…ndata( ) , by first solving a set of initial 

value ordinary differential equations of the form given in equations (9) for the unknowns u.
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du1

dv
= g1 v,u1,u2,!,unu ,θ1,θ2,!,θnp

;x1, x2,!xns( );     u1 0( ) = u1
0 x1, x2,!xns( )

du2

dv
= g2 v,u1,u2,!,unu ,θ1,θ2,!,θnp

;x1, x2,!xns( );     u2 0( ) = u2
0 x1, x2,!xns( )

"
dunu
dv

= gnu v,u1,u2,!,unu ,θ1,θ2,!,θnp
;x1, x2,!xns( );     unu 0( ) = unu0 x1, x2,!xns( )

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

 (9)

FitNumAlgMR.m can be used to fit a model of the form given in equations (10) to a set of multiple 

response experimental data points
 
x1,l , x2,l ,!, xns ,l , ŷ1,l , ŷ2,l ,!, ŷnr ,l( );l = 1…ndata( ) , by first solving a set 

of non-linear equations of the form given in equations (8) for the unknowns u. FitNumAlgMR.m can only 

be used if every response variable has been measured for every data point; a so-called complete data 

set.

 

y1 = f1 u1,u2,!,unu , x1, x2,!, xns( )
"

ynr = fnr u1,u2,!,unu , x1, x2,!, xns( )
 (10)

Finally, FitNumDifMR.m can be used to fit a model of the form given in equations (10) to a set of 

multiple response experimental data points
 
x1,l , x2,l ,!, xns ,l , ŷ1,l , ŷ2,l ,!, ŷnr ,l( );l = 1…ndata( ) , by first 

solving a set of initial value ordinary differential equations of the form given in equations (9) for the 

unknowns u. FitNumDifMR.m can only be used if every response variable has been measured for every 

data point; a so-called complete data set.
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