
A First Course on Kinetics and Reaction Engineering

Example S4.5

Problem Purpose
The purpose of this example is to illustrate how to use the MATLAB template file FitNumDifMR.m to

perform a regression analysis for multiple response data with a model that consists of a set of initial value
ordinary differential equations that must be solved numerically.

Problem Statement
Suppose that 8 experiments were performed wherein the values of two variables, x1 and x2 were

set and then the values of variables y1, y2 and y3 were measured. The results of the experiments are

shown in Table 1. Additionally suppose that equations (1) through (3) constitute a model of the

experiments. The goal here is to fit the model to the data and assess the quality of the fit.

Table 1. Data for Example 1.

x1 x2 ŷ1 ŷ2 ŷ3

0.4809 36.0 0.4188 0.0063 0.0298

0.4809 143.0 0.2882 0.0046 0.1200

0.4809 296.0 0.2188 0.0027 0.1682

0.4809 561.0 0.0868 0.0011 0.2578

0.4725 25.0 0.4163 0.0067 0.0279

0.4725 185.0 0.2629 0.0043 0.1334

0.4725 335.5 0.1598 0.0021 0.2056

0.4725 462.0 0.1074 0.0014 0.2326

dy1

dv
= −θ1y1 ; y1 0() = x1 (1)

dy2

dv
= θ1y1 − θ2 +θ3()y2 ; y2 0() = 0 (2)

dy3

dv
= θ2y2 ; y3 0() = 0 (3)

Problem Analysis
The data points in this problem have three response variables, and the value of all three responses

was measured for every data point. In other words, the data set in this problem is a complete, multiple

AFCoKaRE, Example S4.5 1

response data set. The model consists of a set of initial value ordinary differential equations. These facts
indicate that the model can be fit to the data using the MATLAB template file FitNumDifMR.m.

Note: The solution presented here will read very much like the solution to Example S4.4. The
reasons are threefold. First, this is the exact same problem. In Example S4.4 the model equations used

are the analytical solution of equations (1) through (3) here; that’s the only difference. Second, the use of
the template file FitNumDifMR.m is very, very similar to the use of FitNumAlgMR.m and FitNumDifSR.m.

Third, I’m lazy; it just didn’t seem worth the effort to rewrite the solution so it says essentially the same
thing as Example S4.4, but using different words.

Problem Solution
Notice, the model equations do not contain unknowns represented by u. That is because in this

problem, the responses are equal to the unknowns in the model equations. You may recall that the

template file is set up to solve the model equations for u and then use the result to calculate y. Here it is

trivial to recast the equations in that form, as shown in equations (4) through (9). As was done in Example
S4.4, the base-10 logarithms of the parameters will be used as the guesses to shrink the range of

possible values.

du1

dv
= −θ1u1 ; u1 0() = x1 (4)

du2

dv
= θ1u1 − θ2 +θ3()u2 ; u2 0() = 0 (5)

du3

dv
= θ2u2 ; u3 0() = 0 (6)

y1 = u1 x2() (7)

y2 = u2 x2() (8)

y3 = u3 x2() (9)

The responses won’t always be equal to the unknowns (see Example S4.2). Therefore, from this

point forward, equations (4) through (6) will be taken to be the model equations and equations (7) through

(9) will be taken to represent the functions f referred to in the informational reading.

Following the step-by-step instructions for the use of FitNumDifMR.m, a copy of that file was saved

as S4_Example_5.m and is provided with this supplemental unit. The introductory comment and the
function name were then changed as in all the other examples in this supplemental unit. There are six

required modifications that must be made each time FitNumDifMR.m is used. They are indicated in the
code by a comment that begins “% EDIT HERE”. The first three are exactly the same as in Example S4.4

and won’t be shown here.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 2

The fourth required modification appears within the internal function, odeqns. It involves evaluating

the three derivatives that constitute the model, namely equations (4) through (6), and returning the results

as a column vector, dudv. You can see that the only argument received by odeqns is the values of u1, u2

and u3, in the form of a column vector named u. Looking at the model equations (4) through (6), you can

see that they also contain the model parameters, θ1, θ2 and θ3. The parameters are available in the

column vector p. Recalling that the guesses I’ll provide for the parameters are the base 10 logs of the

actual parameters, θ1 is equal to 10^p(1), θ2 is 10^p(2), and θ3 is 10^p(3). With this knowledge, the

modification of internal function odeqns is straightforward, as shown In Listing 1.

Listing 1. Internal function odeqns after modification.

The other two required modifications takes place within the internal function, mrmodel. They occur

within a loop through each of the experimental data points, i. The first is where initial values for the model

unknowns, u1, u2 and u3, for data point i need to be entered along with the initial and final values of the

independent variable, v. It can be seen in equations (4) through (6) that the initial value of v is zero and

the initial values of u1, u2 and u3 are x1, 0 and 0, respectively. Equations (7) through (9) show that the final

value of v is equal to x2. The values of the set variables for data point i are available at this point in the

column vector named x_set; hence x2 is available as x_set(2). The corresponding modification of the

template file is shown in Listing 2. Just a few lines after that modification, still within the loop through the

data points within the internal function, mrmodel, the final required modification must be made. This

modification is located just after the model equations have been solved for the values of u at the specified

final v, and the comment indicates that the values of the response variables need to be calculated. In this

problem, the response variables are calculated using equations (7) through (9), so this modification

simply involves adding the code to calculate y1, y2 and y3 using those equations, as also shown in Listing

2.

! % Function that evaluates the ODEs
 function dudv = odeqns(v,u)
 % Current parameter values are available in column vector p
 % Current set variable values are available in column vector x_set
 dudv = [
 -10^p(1)*u(1);
 10^p(1)*u(1) - (10^p(2)+10^p(3))*u(2);
 10^p(2)*u(2);
];
 end % of internal function odeqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 3

Listing 2. Internal function mrmodel after modification.

That completes the required modification of S4_Example_5.m, and it can be saved in the current

MATLAB working directory or in a directory that is part of the MATLAB search path. When S4_Example_5
is executed, it must be passed a column vector that contains guesses for each of the base-ten logs of the

three parameters in the model, as discussed previously. From this point on, the process is exactly the
same as in Example S4.4. Guesses were provided, S4_Example_5 was executed and the process of

copying the results (pf) into p_guess and re-executing S4_Example_5.m was repeated until the

returned parameter values were the same as the values guessed, indicating that the minimization had

converged. Listing 3 shows the final parameter copy and the text output from running S4_Example_5.m.
In addition to the text output, nine figures were generated, including Figures 1 through 4 included here. By

 function y = mrmodel(p_current)
 % Declare y
 y = zeros(n_data,n_resp);
 % Make the current parameters available to the model equations
 p = p_current;

 for i = 1:n_data
 % Make the set variables available to the model equations
 for j = 1:n_set
 x_set(j) = x(i,j);
 end

 % Initial and final values
 v0 = 0.0;
 u0 = [
 x_set(1);
 0.0;
 0.0;
];
 vf = x_set(2);

 % Solve the set of ordinary differential model equations
 [v,uu] = ode45(@odeqns,[v0 vf],u0);
 last_value = length(v);
 u = uu(last_value,:);

 % Use the solution to calculate the responses, y(1), y(2), ...
 % by evaluating f1(u(1),...,u(n),x_set(1),...,x_set(n_set)),
 % f2(u(1),...,u(n),x_set(1),...,x_set(n_set)), etc.
 y(i,:) = [
 u(1);
 u(2);
 u(3);
];
 end
 end % of internal function mrmodel

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 4

comparison, you can see that the results are essentially the same as those presented in Example S4.4,
which is expected since the models are equivalent and the data are identical.

Listing 3. Output from the final re-execution of S5_Example_1.m.

Figure 1. Parity plot showing the predicted versus measured values of response variable y1.

>> p_guess = [
 -2.4943

 -0.8521
 -1.1163

];
>> S4_Example_5(p_guess)

Best Values for the Parameters:

pf =
 -2.4943

 -0.8521
 -1.1163

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 5

Figure 2. Parity plot showing the predicted versus measured values of response variable y2.

Figure 3. Parity plot showing the predicted versus measured values of response variable y3.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 6

Figure 4. Residuals plot for response variable y3 versus set variable x2.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.5 7

