
A First Course on Kinetics and Reaction Engineering

Example S4.4

Problem Purpose
The purpose of this example is to illustrate how to use the MATLAB template file FitNumAlgMR to

perform a regression analysis for multiple response data with a model that consists of a set of non-linear
algebraic equations that must be solved numerically.

Problem Statement
Suppose that 8 experiments were performed wherein the values of two variables, x1 and x2 were

set and then the values of variables y1, y2 and y3 were measured. The results of the experiments are

shown in Table 1. Additionally suppose that equations (1) through (3) constitute a model of the

experiments. The goal here is to fit the model to the data and assess the quality of the fit.

Table 1. Data for Example 1.

x1 x2 ŷ1 ŷ2 ŷ3

0.4809 36.0 0.4188 0.0063 0.0298

0.4809 143.0 0.2882 0.0046 0.1200

0.4809 296.0 0.2188 0.0027 0.1682

0.4809 561.0 0.0868 0.0011 0.2578

0.4725 25.0 0.4163 0.0067 0.0279

0.4725 185.0 0.2629 0.0043 0.1334

0.4725 335.5 0.1598 0.0021 0.2056

0.4725 462.0 0.1074 0.0014 0.2326

y1 − x1 exp −θ1x2() = 0 (1)

y2 −θ1x1
exp −θ2 −θ3()x2()− exp −θ1x2()

θ1 −θ2 −θ3

⎛

⎝
⎜

⎞

⎠
⎟ = 0 (2)

y3 −θ2x1
1

θ2 +θ3
+
exp −θ1x2()
θ1 −θ2 −θ3

−
θ1 exp −θ2 −θ3()x2()
θ1 −θ2 −θ3() θ2 +θ3()

⎛

⎝
⎜

⎞

⎠
⎟ = 0 (3)

AFCoKaRE, Example S4.4 1

Problem Analysis
The data points in this problem have three response variables, and the value of all three responses

was measured for every data point. In other words, the data set in this problem is a complete, multiple
response data set. The model consists of a set of algebraic equations. These facts indicate that the model

can be fit to the data using the MATLAB template file FitNumAlgMR.m.

Problem Solution

Notice, the model equations do not contain unknowns represented by u. That is because in this

problem, the responses are equal to the unknowns in the model equations. You may recall that the

template file is set up to solve the model equations for u and then use the result to calculate y. Here it is

trivial to recast the equations in that form, as shown in equations (4) through (9).

u1 − x1 exp −θ1x2() = 0 (4)

u2 −θ1x1
exp −θ2 −θ3()x2()− exp −θ1x2()

θ1 −θ2 −θ3

⎛

⎝
⎜

⎞

⎠
⎟ = 0 (5)

u3 −θ2x1
1

θ2 +θ3
+
exp −θ1x2()
θ1 −θ2 −θ3

−
θ1 exp −θ2 −θ3()x2()
θ1 −θ2 −θ3() θ2 +θ3()

⎛

⎝
⎜

⎞

⎠
⎟ = 0 (6)

y1 = u1 (7)

y2 = u2 (8)

y3 = u3 (9)

(In fact, looking at equations (1) through (3), you can see that they can be solved analytically for the

values of the response variables. In other words, it isn’t necessary to solve them numerically. However,

the template file is set up to do so, a numerical solution will be performed. Therefore, from this point

forward, equations (4) through (6) will be taken to be the model equations and equations (7) through (9)

will be taken to represent the functions f referred to in the informational reading.)

While the main purpose here is to illustrate how to use FitNumAlgMR.m, in the course of doing so, I

will also illustrate two “tricks” that can sometimes help in getting the code to converge to a solution. First,

let’s suppose that the values of the parameters, θ1, θ2 and θ3, might fall anywhere in a range from 10-10 to

1010. (This might be the case if the parameters represent rate coefficients.) It will be difficult to provide

guesses that are close to the best values, and as the code attempts to find the best values of the

parameters, the routine will have to vary the guesses for the parameters over that very large span.

Therefore, instead of using the parameters directly, I’ll use their base-10 logarithms. In that way, my

guess only has to be in the range from -10 to +10, and the fitting routine only has to vary my guesses

over that same range. The only thing I need to remember when I do this, is that when I enter the code for

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 2

equations (4) through (6) in the internal function nlaeqns, I need to use 10θ1 instead of θ1; 10θ2 instead

of θ2 and 10θ3 instead of θ3.

The other trick is related to guessing values for the unknowns in the model equations. Recall, in the

internal function mrmodel, one of the required modifications is to provides guesses for u1, u2 and u3 just

before fsolve is called to solve equations (1) through (3) for a given data point. The trick I’m going to

use is to calculate these guesses using the measured responses, ŷ1, ŷ2 and ŷ3. For this problem that is

trivial because the unknowns are equal to the responses. Therefore, I can use ŷ1 (the measured

response) as a guess for y1 (the predicted response) which in this case equals the unknown u1. The same

can be done to generate guesses for u2 and u3.

Following the step-by-step instructions for the use of FitNumAlgMR.m, a copy of that file was saved

as S4_Example_4.m and is provided with this supplemental unit. The introductory comment and the

function name were then changed. There are six modifications that must be made each time this template

file is used. They are indicated in the code by a comment that begins “% EDIT HERE”. The first required

modification involves defining any experimental and universal constants, but in this problem there aren’t

any experimental or universal constants in the model. Consequently, the first “% EDIT HERE:” comment

was simply deleted. The second required modification involves entering the set variables as a matrix (it

must be named x) with a separate column for each different response variable and one row per

experiment. Here there are two set variables, x1 and x2, so the matrix has two columns. There are eight

rows in the matrix, corresponding to the eight data points. The third required modification involves

entering the experimentally measured values of the response variable as a column vector named y_hat.

Again, there is one row per data point in this column vector. Listing 1 shows the code after these

modifications were completed.

The fourth required modification appears within the internal function, nlaeqns. It involves

evaluating the three functions that constitute the model, namely equations (4) through (6), and returning

the results as a column vector, g. You can see that the only argument received by nlaeqns is the values

of u1, u2 and u3, in the form of a column vector named u. Looking at the model equations (4) through (6),

you can see that they also contain the model parameters, θ1, θ2 and θ3, and the set variables, x1 and x2.

The parameters and set variables are available in the column vectors p and x_set. Recalling that the

guesses I’ll provide for the parameters are the base 10 logs of the actual parameters, θ1 is equal to

10^p(1), θ2 is 10^p(2), θ3 is 10^p(3), x1 is x_set(1) and x2 is x_set(2). With this knowledge, the

modification of internal function nlaeqns is straightforward, as shown In Listing 2.

The other two required modifications takes place within the internal function, mrmodel. They occur

within a loop through each of the experimental data points, i. The first is where guesses for the model

unknowns, u1, u2 and u3, for data point i need to be entered. The guesses were generated from the

measured responses for data point i as described earlier and shown in Listing 3. Just a few lines after

that modification, still within the loop through the data points within the internal function, mrmodel, the

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 3

final required modification must be made. This modification is located just after the model equations have

been solved for the values of u, and the comment indicates that the values of the response variables

need to be calculated. In this problem, the response variables are calculated using equations (7) through

(9), so this modification simply involves adding the code to calculate y1, y2 and y3 using those equations,

as also shown in Listing 3.

Listing 1. Results of modifications to change the file name and enter the set and response variable
values.

% Modified version of the MATLAB template file FitNumAlgMR.m that was
% modified for the solution of Example 4 of Supplemental Unit S4 of "A
% First Course on Kinetics and Reaction Engineering."
%
function S4_Example_4(p_guess)
 % Set variables
 x = [0.4809! 36.0
 0.4809! 143.0
 0.4809! 296.0
 0.4809! 561.0
 0.4725! 25.0
 0.4725! 185.0
 0.4725! 335.5
 0.4725! 462.0];

 % Experimental response variables
 y_hat = [0.4188! 0.0063! 0.0298
 0.2882! 0.0046! 0.1200
 0.2188! 0.0027! 0.1682
 0.0868! 0.0011! 0.2578
 0.4163! 0.0067! 0.0279
 0.2629! 0.0043! 0.1334
 0.1598! 0.0021! 0.2056
 0.1074! 0.0014! 0.2326];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 4

Listing 2. Internal function nlaeqns after modification.

Listing 3. Internal function mrmodel after modification.

 function g = nlaeqns(u)
 % Current parameter values are available in column vector p
 % Current set variables are available in column vector x_set
 x1 = x_set(1);
 x2 = x_set(2);
 p1 = 10^p(1);
 p2 = 10^p(2);
 p3 = 10^p(3);
 s1 = p2 + p3;
 s2 = p1-p2-p3;
! ! g = [
! ! ! u(1) - x1*exp(-p1*x2);
 ! u(2) - p1*x1*((exp(-s1*x2)-exp(-p1*x2))/s2);
 ! u(3) - p2*x1*(1/s1+exp(-p1*x2)/s2-p1*exp(-s1*x2)/s1/s2);
! !];
 end % of internal function nlaeqns

 function y = mrmodel(p_current)
 % Make the current parameters available to the model equations
 p = p_current;
 y = zeros(n_data,n_resp);

 % loop through the data points
 for i = 1:n_data
 % Get the set variables
 for j = 1:n_set
 x_set(j) = x(i,j);
 end

 % provide guesses for the solution to the model equations
 u_guess = [
 y_hat(k,1);
 y_hat(k,2);
 y_hat(k,3);
];

 % Solve the set of nonlinear model equations
 u = fsolve(@nlaeqns, u_guess);

 % Use the solution to calculate the responses
 y(i,:) = [
 u(1);
 u(2);
 u(3);
];
 end
 end % of internal function mrmodel

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 5

That completes the required modification of S4_Example_4.m, and it can be saved in the current
MATLAB working directory or in a directory that is part of the MATLAB search path. When S4_Example_4

is executed, it must be passed a column vector that contains guesses for each of the base-ten logs of the
three parameters in the model, as discussed previously. My first few guesses were so far off that the

function made essentially no progress toward minimizing the objective function. When I used guesses of
-4, -4 and -6, the code ran, but the final fit did not look very good, as evidenced, for example, by the

deviation of the data from the diagonal in the parity plot for y3, Figure 1. (It also produced the fsolve

“equation solved” message many, many times, see Supplemental Unit S4. Here I will not show that
message; the modified template file provided with this unit has the call that generates the messages

commented out and replaced by two lines that suppress the messages. I don’t recommend that you do
this until you are sure that fsolve is converging properly.)

Figure 1. Parity plot showing the predicted versus measured values of response variable y1.

At that point, I copied the fitted parameters displayed as the column vector pf into the column

vector p_guess and re-executed S4_Example_4.m. Doing so returned different parameter values,

indicating that the minimization had not converged. Therefore, I keep repeating this process of copying pf

into p_guess and re-executing S4_Example_4.m. Eventually I reached the point where the returned

parameter values were the same as the values I had guessed, indicating that the minimization had

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 6

converged. This is shown in Listing 4, which shows the final parameter copy and the text output from

running S4_Example_4.m. In addition to the text output, nine figures were generated, including Figures 2

through 5 included here.

Listing 4. Output from the final re-execution of S4_Example_4.m.

Unlike the other curve fitting template files, FitNumAlgMR does not report a correlation coefficient

nor 95% uncertainty limits for the fitted parameters. (For single response data, these quantities can be

computed using the built-in MATLAB functions nlinfit and nlparci; I am not aware of equivalent

built-in functions that can be used with multiple response data.) It does generate parity plots and residuals

plots, however. Here the three parity plots are presented in Figures 2 through 4. In all three cases, the

data points lie close to the diagonal line, indicating a reasonably good fit. Six residuals plots are also

generated, but here I’ve only shown Figure 5 as a representative example. Figure 5 shows the residuals

for y2 as a function of the set variable x2. You might argue that the residuals are all positive at higher

values of x2, but there really are too few data points to draw any conclusions here. If one were fitting this

model for anything other than illustrational purposes, then there should be a lot more data than just 8 data

points.

It is also important to remember that the parameters being fit here using FitNumAlgMR are the base

10 logarithms of the actual parameters that appear in the equations. Therefore, the fitted values of the

model parameters are given in equations (10) through (12).

θ1 = 10-2.4941 = 0.0032 (10)

θ2 = 10-0.8519 = 0.141 (11)

θ3 = 10-1.1161 = 0.0765 (12)

This might represent a local minimum, and not the global minimum of the objective function.

However, with so few data, it probably does not make sense to repeat the whole process using a different
initial guess to see if a different minimum can be found. In a situation where it was important that the

>> p_guess = [
 -2.4941

 -0.8519
 -1.1161

];
>> S4_Example_4(p_guess)

Best Values for the Parameters:

pf =
 -2.4941

 -0.8519
 -1.1161

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 7

model be accurate and correct, this would be a required step, but in that case there would also (hopefully)
be many, many more data points.

Figure 1. Parity plot showing the predicted versus measured values of response variable y1.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 8

Figure 2. Parity plot showing the predicted versus measured values of response variable y2.

Figure 3. Parity plot showing the predicted versus measured values of response variable y3.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 9

Figure 4. Residuals plot for response variable y2 versus set variable x2.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.4 10

