
A First Course on Kinetics and Reaction Engineering

Example S4.3

Problem Purpose
The purpose of this example is to illustrate how to use the MATLAB template file FitNumDifSR.m to 

perform a regression analysis for single response data with a model that consists of a set of coupled 
initial-value ordinary differential equations that must be solved numerically.

Problem Statement
Suppose that 12 experiments were performed wherein the values of three variables, x1, x2 and x3, 

were set and then the value of variable y was measured. The results of the experiments are shown in 

Table 1. There are 12 data points; for each data point there are three set variables, x1, x2 and x3, and one 

response variable, ŷ. Differential equations (1) through (3) are the experimental model being analyzed. 

The dependent variables in the model equations are  u1, u2 and u3, and the independent variable is v. The 

response variable can be calculated from the solution of the model equations using equation (4). The 

constant, A, that appears in the model equations has a value of 10.

Table 1. Experimental Data.

x1 x2 x3 ŷ

2 0.2 0.2 0.208
2 0.6 0.6 0.491
2 0.2 1 0.911
2 1 0.2 0.091
1 0.2 0.2 0.112
1 0.6 0.6 0.333
1 0.2 1 0.694
1 1 0.2 0.060

0.67 0.2 0.2 0.083
0.67 0.6 0.6 0.274
0.67 0.2 1 0.545
0.67 1 0.2 0.042

 

du1

dv
= −A θ1u1u2

2

1+θ2u1 +θ3u2

;      u1 0( ) = x2  (1)
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du2

dv
= −A θ1u1u2

2

1+θ2u1 +θ3u2

;      u2 0( ) = x3  (2)

du3

dv
= 2A θ1u1u2

2

1+θ2u1 +θ3u2

;      u3 0( ) = 0  (3)

y =
x2 − u1 vf( )

x2

;      vf = x1  (4)

Problem Analysis
This problem is nearly the same as the problem presented in Example S4.2; the difference is that 

here the model equations are coupled initial value ordinary differential equations while in Example S4.2 

they were non-linear equations. Consequently, the proper template file to use is FitNumDifSR.m. Step-b-
step instructions for using FitNumDifSR.m are provided with this supplemental unit, and they will be 

illustrated in the solution of this example problem.

Problem Solution
A copy FitNumDifSR.m was saved as S4_Example_3.m, and because the filename had been 

changed, the function statement also had to be changed to match, as required by MATLAB. At the same 

time, the introductory comment was changed to indicate the purpose of the modified file. These changes 
are shown in Listing 1.

Listing 1. Modified introductory comment and changed function name.

There are six required modifications that must be made to the template file each time it is used. 

They are indicated in the code by a comment that begins “% EDIT HERE”. The first involves entering all 
constants given in the problem statement or needed for fitting the model to the data. In this problem, there 

is one constant, A, so its value is entered at this point. The second required modification involves entering 

the set variables as a matrix (it must be named x) with a separate column for each different response 

variable and one row per experiment. Here there are two set variables, x1 and x2, so the matrix has two 

columns. There are eleven rows in the matrix, one for each data point. The third required modification 
involves entering the experimentally measured values of the response variable as a column vector named 

y_hat. Again, there is one row per data point in this column vector. Listing 2 shows the code after these 

modifications were completed.

% Modified version of the MATLAB template file FitNumDifSR.m that was
% modified for the solution of Example 3 of Supplemental Unit S4 of "A
% First Course on Kinetics and Reaction Engineering."
%
function S4_Example_3(p_guess)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 2



Listing 2. Entry of constants, set variables and response variables.

The fourth required modification is located in the internal function odeqns. It involves evaluating the 

derivatives in equations (1) through (3), given values of v and u. In this problem, the evaluation of the 

derivatives also requires values for the parameters, θ1, θ2 and θ3. These are not passed to odeqns as an 

argument, but they are available in the global variable p. Hence, θ1 is stored in p(1), θ2 in p(2) and θ3 in 

p(3). The values of the set variables aren’t needed for this problem, but if they had been, they similarly 

would have been available in the column vector x_set. All the quantities needed for the evaluation of the 

derivatives are available, so it is easy to write the code to do so as seen in Listing 3.

    % Known quantities and constants (in consistent units)
    A = 10.0;
    
    % Set variables
    x = [2! 0.2! 0.2
    2!0.6! 0.6
    2!0.2! 1
    2!1! 0.2
    1!0.2! 0.2
    1!0.6! 0.6
    1!0.2! 1
    1!1! 0.2
    0.67! 0.2! 0.2
    0.67! 0.6! 0.6
    0.67! 0.2! 1
    0.67! 1! 0.2];
    
    % Experimental response variables
    y_hat = [0.208
    0.491
    0.911
    0.091
    0.112
    0.333
    0.694
    0.060
    0.083
    0.274
    0.545
    0.042];
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Listing 3. S4_Example_3.m after performing the fourth required modification.

The last two required modifications take place within the internal function, nlmodel. They occur 

within a loop through each of the experimental data points, i. The first is to provide the initial values of the 

independent variable, v and the dependent variables, u, and the final value of the independent variable for 

data point i. Equations (1) through (3) indicate that the initial value of the independent variable, v, is 0 and 

the initial values of the dependent variables are u1(0) = x2, u2(0) = x3 and u3(0) = 0. Looking at equation 

(4), we see that we need the value of u1 at vf = x1, so the final value of the independent variable is x1. The 

final required modification to the template file appears a few lines later after the model equations have 

been solved, but still within the loop through the data points. The modification involves using the results of 

solving the model equations, stored in the column vector z, to calculate the response using equation (4). 

Listing 4 shows the internal function nlmodel after these modifications have been completed.

! % Function that evaluates the ODEs
    function dudv = odeqns(v,u)
        % Current parameter values are available in column vector p
        % Current set variable values are available in column vector x_set
        term = A*p(1)*u(1)*u(2)^2/(1.0 + p(2)*u(1) + p(3)*u(2));
        dudv = [
            -term
! ! -term
            2*term
        ];
    end % of internal function odeqns
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Listing 4. Internal function nlmodel after completing the final two required modifications.

That completes the required modification of S4_Example_3.m, and it can be saved in the current 
MATLAB working directory or in a directory that is part of the MATLAB search path. When S4_Example_3 

is executed, it must be passed a column vector that contains guesses for each of the three parameters in 

the model. This column vector was named p_guess and was set up from the MATLAB command line; as 

Listing 5 indicates, I simply guessed a value of 1.0 for each of the three parameters. After that, the file 
was executed by typing S4_Example_3(p_guess), as also shown in Listing 5, which also shows the 

output that is produced.

    function y = nlmodel(p_current,x)
        % Declare y
        y = zeros(n_data,1);
        % Make the current parameters available to the model equations
        p = p_current;
        
        for i = 1:n_data
            % Make the set variables available to the model equations
            for j = 1:n_set
                x_set(j) = x(i,j);
            end
            
            % Initial and final values
            v0 = 0;
            u0 = [
                x_set(2)
                x_set(3)
                0.0
            ];
            vf = x_set(1);
            
            % Solve the set of ordinary differential model equations
            [v,uu] = ode45(@odeqns,[v0 vf],u0);
            last_value = length(v);
            u = uu(last_value,:);
            
            % calculate the response, y, by evaluating 
            % f(u(1),...,u(n),x_set(1),...,x_set(n_set))
            y(i) = (x_set(2)-u(1))/x_set(2);!
        end
    end % of internal function nlmodel
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Listing 5. Creation of the input column vector, p_guess, execution of S4_Example_3, and the resulting 
output.

Looking at the output, it can be seen that the correlation coefficient is very close to 1.0. The 

magnitude of the scatter of the data from the line in the parity plot (Figure 1) is very small, and there are 

no trends in the deviation in any of the residuals plots (Figures 2 through 4), so it can be concluded that 

the model does a very good job of fitting the experimental data. The best values of the parameters are θ1 

= 0.89 ± 0.36, θ2 = 2.72 ± 1.87 and θ3 = 5.43 ± 2.61 (95% confidence interval based upon 12 data). If 

these results are used as an initial guess to S4_Example_3, the same result is obtained indicating that 

this is a converged solution.

Suppose, however, that the fit was OK, but not excellent. In that case, the parameter values that 

were found by the process might correspond to a local minimum of the objective function and not to the 

global minimum. It would then be advisable to repeat the entire fitting process, but with a starting guess 

that was very different from the one used here (each of the three parameters equal to 1.0). It is possible 

that doing so would lead to a converged solution where the fit was considerably better.

Alternatively, suppose that this was a kinetics problem and the parameters corresponded to rate 

coefficients. Further suppose that even though the fit was very good, the values of the parameters didn’t 

>> p_guess = [1
1

1];
>> S4_Example_3(p_guess)

r_squared =

   9.9926e-01

Best Values for the Parameters:

pf =
   8.8542e-01

   2.7199e+00
   5.4315e+00

95% Confidence Intervals for the Parameters:

pf_u =

   3.6195e-01
   1.8676e+00

   2.6105e+00
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make sense as rate coefficients for the problem being solved. In that case, even though the fit is quite 

good, it would again be advisable to repeat the entire fitting process with a very different initial guess. In 

this case you’d be looking for a fit that was as good as the present fit, but where the resulting parameter 

values did make sense physically.

When you reach the point where the fit is acceptably good and the parameters make sense on 

physical grounds, you can probably stop looking for better sets of parameters. In contrast, if you never 

reach the point where the fit is acceptably good and the parameters make sense on physical grounds, 

you might want to consider the possibility that the model you are using simply isn’t appropriate.

 Figure 1. A parity plot for the fit of the model in equations (1) through (4) to the data in Table 1.
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Figure 2. Residuals plot against x1.

Figure 3. Residuals plot against x2.
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Figure 4. Residuals plot against x3.
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