
A First Course on Kinetics and Reaction Engineering

Example S4.3

Problem Purpose
The purpose of this example is to illustrate how to use the MATLAB template file FitNumDifSR.m to

perform a regression analysis for single response data with a model that consists of a set of coupled
initial-value ordinary differential equations that must be solved numerically.

Problem Statement
Suppose that 12 experiments were performed wherein the values of three variables, x1, x2 and x3,

were set and then the value of variable y was measured. The results of the experiments are shown in

Table 1. There are 12 data points; for each data point there are three set variables, x1, x2 and x3, and one

response variable, ŷ. Differential equations (1) through (3) are the experimental model being analyzed.

The dependent variables in the model equations are u1, u2 and u3, and the independent variable is v. The

response variable can be calculated from the solution of the model equations using equation (4). The

constant, A, that appears in the model equations has a value of 10.

Table 1. Experimental Data.

x1 x2 x3 ŷ

2 0.2 0.2 0.208
2 0.6 0.6 0.491
2 0.2 1 0.911
2 1 0.2 0.091
1 0.2 0.2 0.112
1 0.6 0.6 0.333
1 0.2 1 0.694
1 1 0.2 0.060

0.67 0.2 0.2 0.083
0.67 0.6 0.6 0.274
0.67 0.2 1 0.545
0.67 1 0.2 0.042

du1

dv
= −A θ1u1u2

2

1+θ2u1 +θ3u2

; u1 0() = x2 (1)

AFCoKaRE, Example S4.3 1

du2

dv
= −A θ1u1u2

2

1+θ2u1 +θ3u2

; u2 0() = x3 (2)

du3

dv
= 2A θ1u1u2

2

1+θ2u1 +θ3u2

; u3 0() = 0 (3)

y =
x2 − u1 vf()

x2

; vf = x1 (4)

Problem Analysis
This problem is nearly the same as the problem presented in Example S4.2; the difference is that

here the model equations are coupled initial value ordinary differential equations while in Example S4.2

they were non-linear equations. Consequently, the proper template file to use is FitNumDifSR.m. Step-b-
step instructions for using FitNumDifSR.m are provided with this supplemental unit, and they will be

illustrated in the solution of this example problem.

Problem Solution
A copy FitNumDifSR.m was saved as S4_Example_3.m, and because the filename had been

changed, the function statement also had to be changed to match, as required by MATLAB. At the same

time, the introductory comment was changed to indicate the purpose of the modified file. These changes
are shown in Listing 1.

Listing 1. Modified introductory comment and changed function name.

There are six required modifications that must be made to the template file each time it is used.

They are indicated in the code by a comment that begins “% EDIT HERE”. The first involves entering all
constants given in the problem statement or needed for fitting the model to the data. In this problem, there

is one constant, A, so its value is entered at this point. The second required modification involves entering

the set variables as a matrix (it must be named x) with a separate column for each different response

variable and one row per experiment. Here there are two set variables, x1 and x2, so the matrix has two

columns. There are eleven rows in the matrix, one for each data point. The third required modification
involves entering the experimentally measured values of the response variable as a column vector named

y_hat. Again, there is one row per data point in this column vector. Listing 2 shows the code after these

modifications were completed.

% Modified version of the MATLAB template file FitNumDifSR.m that was
% modified for the solution of Example 3 of Supplemental Unit S4 of "A
% First Course on Kinetics and Reaction Engineering."
%
function S4_Example_3(p_guess)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 2

Listing 2. Entry of constants, set variables and response variables.

The fourth required modification is located in the internal function odeqns. It involves evaluating the

derivatives in equations (1) through (3), given values of v and u. In this problem, the evaluation of the

derivatives also requires values for the parameters, θ1, θ2 and θ3. These are not passed to odeqns as an

argument, but they are available in the global variable p. Hence, θ1 is stored in p(1), θ2 in p(2) and θ3 in

p(3). The values of the set variables aren’t needed for this problem, but if they had been, they similarly

would have been available in the column vector x_set. All the quantities needed for the evaluation of the

derivatives are available, so it is easy to write the code to do so as seen in Listing 3.

 % Known quantities and constants (in consistent units)
 A = 10.0;

 % Set variables
 x = [2! 0.2! 0.2
 2!0.6! 0.6
 2!0.2! 1
 2!1! 0.2
 1!0.2! 0.2
 1!0.6! 0.6
 1!0.2! 1
 1!1! 0.2
 0.67! 0.2! 0.2
 0.67! 0.6! 0.6
 0.67! 0.2! 1
 0.67! 1! 0.2];

 % Experimental response variables
 y_hat = [0.208
 0.491
 0.911
 0.091
 0.112
 0.333
 0.694
 0.060
 0.083
 0.274
 0.545
 0.042];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 3

Listing 3. S4_Example_3.m after performing the fourth required modification.

The last two required modifications take place within the internal function, nlmodel. They occur

within a loop through each of the experimental data points, i. The first is to provide the initial values of the

independent variable, v and the dependent variables, u, and the final value of the independent variable for

data point i. Equations (1) through (3) indicate that the initial value of the independent variable, v, is 0 and

the initial values of the dependent variables are u1(0) = x2, u2(0) = x3 and u3(0) = 0. Looking at equation

(4), we see that we need the value of u1 at vf = x1, so the final value of the independent variable is x1. The

final required modification to the template file appears a few lines later after the model equations have

been solved, but still within the loop through the data points. The modification involves using the results of

solving the model equations, stored in the column vector z, to calculate the response using equation (4).

Listing 4 shows the internal function nlmodel after these modifications have been completed.

! % Function that evaluates the ODEs
 function dudv = odeqns(v,u)
 % Current parameter values are available in column vector p
 % Current set variable values are available in column vector x_set
 term = A*p(1)*u(1)*u(2)^2/(1.0 + p(2)*u(1) + p(3)*u(2));
 dudv = [
 -term
! ! -term
 2*term
];
 end % of internal function odeqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 4

Listing 4. Internal function nlmodel after completing the final two required modifications.

That completes the required modification of S4_Example_3.m, and it can be saved in the current
MATLAB working directory or in a directory that is part of the MATLAB search path. When S4_Example_3

is executed, it must be passed a column vector that contains guesses for each of the three parameters in

the model. This column vector was named p_guess and was set up from the MATLAB command line; as

Listing 5 indicates, I simply guessed a value of 1.0 for each of the three parameters. After that, the file
was executed by typing S4_Example_3(p_guess), as also shown in Listing 5, which also shows the

output that is produced.

 function y = nlmodel(p_current,x)
 % Declare y
 y = zeros(n_data,1);
 % Make the current parameters available to the model equations
 p = p_current;

 for i = 1:n_data
 % Make the set variables available to the model equations
 for j = 1:n_set
 x_set(j) = x(i,j);
 end

 % Initial and final values
 v0 = 0;
 u0 = [
 x_set(2)
 x_set(3)
 0.0
];
 vf = x_set(1);

 % Solve the set of ordinary differential model equations
 [v,uu] = ode45(@odeqns,[v0 vf],u0);
 last_value = length(v);
 u = uu(last_value,:);

 % calculate the response, y, by evaluating
 % f(u(1),...,u(n),x_set(1),...,x_set(n_set))
 y(i) = (x_set(2)-u(1))/x_set(2);!
 end
 end % of internal function nlmodel

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 5

Listing 5. Creation of the input column vector, p_guess, execution of S4_Example_3, and the resulting
output.

Looking at the output, it can be seen that the correlation coefficient is very close to 1.0. The

magnitude of the scatter of the data from the line in the parity plot (Figure 1) is very small, and there are

no trends in the deviation in any of the residuals plots (Figures 2 through 4), so it can be concluded that

the model does a very good job of fitting the experimental data. The best values of the parameters are θ1

= 0.89 ± 0.36, θ2 = 2.72 ± 1.87 and θ3 = 5.43 ± 2.61 (95% confidence interval based upon 12 data). If

these results are used as an initial guess to S4_Example_3, the same result is obtained indicating that

this is a converged solution.

Suppose, however, that the fit was OK, but not excellent. In that case, the parameter values that

were found by the process might correspond to a local minimum of the objective function and not to the

global minimum. It would then be advisable to repeat the entire fitting process, but with a starting guess

that was very different from the one used here (each of the three parameters equal to 1.0). It is possible

that doing so would lead to a converged solution where the fit was considerably better.

Alternatively, suppose that this was a kinetics problem and the parameters corresponded to rate

coefficients. Further suppose that even though the fit was very good, the values of the parameters didn’t

>> p_guess = [1
1

1];
>> S4_Example_3(p_guess)

r_squared =

 9.9926e-01

Best Values for the Parameters:

pf =
 8.8542e-01

 2.7199e+00
 5.4315e+00

95% Confidence Intervals for the Parameters:

pf_u =

 3.6195e-01
 1.8676e+00

 2.6105e+00

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 6

make sense as rate coefficients for the problem being solved. In that case, even though the fit is quite

good, it would again be advisable to repeat the entire fitting process with a very different initial guess. In

this case you’d be looking for a fit that was as good as the present fit, but where the resulting parameter

values did make sense physically.

When you reach the point where the fit is acceptably good and the parameters make sense on

physical grounds, you can probably stop looking for better sets of parameters. In contrast, if you never

reach the point where the fit is acceptably good and the parameters make sense on physical grounds,

you might want to consider the possibility that the model you are using simply isn’t appropriate.

 Figure 1. A parity plot for the fit of the model in equations (1) through (4) to the data in Table 1.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 7

Figure 2. Residuals plot against x1.

Figure 3. Residuals plot against x2.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 8

Figure 4. Residuals plot against x3.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.3 9

