
A First Course on Kinetics and Reaction Engineering

Example S4.2

Problem Purpose
The purpose of this example is to illustrate how to use the MATLAB template file FitNumAlgSR.m to

perform a regression analysis for single response data with a model that consists of a set of non-linear
algebraic equations that must be solved numerically.

Problem Statement
Suppose that 12 experiments were performed wherein the values of three variables, x1, x2 and x3,

were set and then the value of variable y was measured. The results of the experiments are shown in

Table 1. Additionally suppose that equations (1) through (3) constitute a model of the experiments with

unknowns, u1, u2 and u3, and that the response variable can be calculated from the solution of the model

equations using equation (4). In these equations, A represents an experimental constant that has a value

of 10.

Table 1. Data for Example 1.

x1 x2 x3 ŷ

5 0.2 0.2 0.200
5 0.6 0.6 0.422
5 0.2 1 0.234
5 1 0.2 0.128

10 0.2 0.2 0.119
10 0.6 0.6 0.312
10 0.2 1 0.191
10 1 0.2 0.092
15 0.2 0.2 0.090
15 0.6 0.6 0.239
15 0.2 1 0.170
15 1 0.2 0.073

x1x2 − A
θ1u1u2

2

1+θ2u1 +θ3u2
− x1u1 = 0 (1)

AFCoKaRE, Example S4.2 1

x1x3 − A
θ1u1u2

2

1+θ2u1 +θ3u2
− x1u2 = 0 (2)

u3 − 2 x2 − u1() = 0 (3)

y = u3
u1 + u2 + u3

 (4)

Problem Analysis
The model for the experiment is a set of three non-linear equations and the data have a single

response, so the MATLAB template file, FitNumAlgSR.m can be used to fit the model to the data. The

solution presented here follows the step-by-step instructions for using FitNumAlgSR.m that accompany
this supplemental unit.

Problem Solution
A copy FitNumAlgSR.m was saved as S4_Example_2.m, and because the filename had been

changed, the function statement also had to be changed to match, as required by MATLAB. At the same
time, the introductory comment was changed to indicate the purpose of the modified file. These changes

are shown in Listing 1.

Listing 1. Modified introductory comment and changed function name.

There are six required modifications that must be made to the template file each time it is used.

They are indicated in the code by a comment that begins “% EDIT HERE”. The first involves entering all

constants given in the problem statement or needed for fitting the model to the data. In this problem, there

is one constant, A, so its value is entered at this point. The second required modification involves entering

the set variables as a matrix (it must be named x) with a separate column for each different response

variable and one row per experiment. Here there are two set variables, x1 and x2, so the matrix has two

columns. There are eleven rows in the matrix corresponding to the eleven data points. The third required

modification involves entering the experimentally measured values of the response variable as a column

vector named y_hat. Again, there is one row per data point in this column vector. Listing 2 shows the

code after these modifications were completed.

% Modified version of the MATLAB template file FitNumAlgSR.m that was
% modified for the solution of Example 2 of Supplemental Unit S4 of "A
% First Course on Kinetics and Reaction Engineering."
%
function S4_Example_2(p_guess)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 2

Listing 2. Entry of constants, set variables and response variables.

The fourth required modification appears within the internal function, nlaeqns. It involves

evaluating the three functions that constitute the model, namely equations (1) through (3), and returning

the results as a column vector, g. You can see in Listing 3 that the only argument received by nlaeqns is

a column vector named u containing the values of u1, u2 and u3. Looking at the model equations (1)

through (3), you can see that they also contain the model parameters, θ1, θ2 and θ3, and the set variables,

x1, x2 and x3. As the comment within the internal function indicates, these quantities are available in the

global column vector variables p, and x_set. That is, θ1 is stored in p(1), θ2 in p(2), θ3 in p(3), x1 in

x_set(1), x2 in x_set(2), and x3 in x_set(3). With this knowledge, the required modification is

straightforward, as shown in Listing 3.

 % Known quantities and constants
 A = 10.0;

 % Enter the set variables
 x = [5! 0.2! 0.2
 5!0.6! 0.6
 5!0.2! 1
 5!1! 0.2
 10! 0.2! 0.2
 10! 0.6! 0.6
 10! 0.2! 1
 10! 1! 0.2
 15! 0.2! 0.2
 15! 0.6! 0.6
 15! 0.2! 1
 15! 1! 0.2];

 % Enter the experimentally measured responses
 y_hat = [0.200
 0.422
 0.234
 0.128
 0.119
 0.312
 0.191
 0.092
 0.090
 0.239
 0.170
 0.073];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 3

Listing 3. Modification for the evaluation of the non-linear equation set.

The last two required modifications take place within the internal function, nlmodel. They occur

within a loop through each of the experimental data points, i. First, as indicated in the comments, guesses

for the model unknowns, u1, u2 and u3, for data point i need to be entered. Often, if you know the physics

of the problem, you can make reasonable guesses based upon that knowledge. Alternatively, it is

sometimes possible to generate guesses for the unknowns in the model equations using the

experimentally measured response variables. Here, however, we don’t have any other problem details to

guide us, so I arbitrarily guessed that the three unknowns would each have a value of 0.5. Just a few

lines after that modification, still within the loop through the data points, the final required modification

must be made. This modification is located just after the model equations have been solved for the values

of u, and as the comment indicates, the modification involves calculating the value of the response

variable using those results. In this problem, the response variable is calculated using equation (4), so

this modification simply involves adding the code to calculate y(i) using equation (4). These final two

required modifications are shown in Listing 4.

That completes the required modification of S4_Example_2.m, and it can be saved in the current

MATLAB working directory or in a directory that is part of the MATLAB search path. When S4_Example_2
is executed, it must be passed a column vector that contains guesses for each of the three parameters in

the model. This column vector was named p_guess and was set up from the MATLAB command line; as

Listing 5 indicates, I simply guessed a value of 1.0 for each of the three parameters. After that, the file

was executed by typing S4_Example_2(p_guess), as also shown in Listing 5.
Executing the file produces a long, long list of comments like the one shown in Listing 6. Each time

fsolve finds a solution to the model equations, it prints a comment like this. The printing of all these

comments can be suppressed as explained in a comment within the template file, but it’s not a bad idea

to let them print out at first, until you are sure the code is functioning properly. That way, if the equation
solver failed for any reason, you would know from the message.

! function g = nlaeqns(u)
 % Current parameter values are available in column vector p
 % Current set variable values are available in column vector x_set
 term2 = A*p(1)*u(1)*u(2)^2/(1.0 + p(2)*u(1) + p(3)*u(2));
! ! g = [
! ! ! x_set(1)*x_set(2) - term2 - x_set(1)*u(1);
 ! x_set(1)*x_set(3) - term2 - x_set(1)*u(2);
 ! u(3) - 2*(x_set(2) - u(1));
! !];
 end % of internal function nlaeqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 4

Listing 4. Modifications within the internal function nlmodel.

Listing 5. Creation of the input column vector, p_guess and execution of S4_Example_2.

Listing 6. Message that appears each time fsolve solves the model equations.

Eventually, after repeating this “equation solved” message many, many times, the desired output

appeared in the MATLAB command window, as shown in Listing 7. In addition to the text output, the plots

 % Function that calculates the responses using the model solution
 function y = nlmodel(p_current,x)
 % Make the current parameters available to the model equations
 p = p_current;
 y = zeros(n_data,1);

 for i = 1:n_data
 % Make the set variables available to the model equations
 for j = 1:n_set
 x_set(j) = x(i,j);
 end

 % Guesses
 % The measured response is available here as y_hat(i)
 u_guess = [
 0.5
 0.5
 0.5
];

 % Solve the set of nonlinear modle equations
 u = fsolve(@nlaeqns, u_guess);

 % Calculate the response
 y(i) = u(3)/(u(1) + u(2) + u(3));
 end
 end % of internal function nlmodel

>> p_guess = [1
1
1];
>> S4_Example_2(p_guess)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 5

shown here as Figures 1 through 4 were generated and displayed. The fitted parameters displayed as the

column vector pf were copied to the column vector p_guess and the modified template file was

executed again with this new guess. The resulting output was essentially identical to that shown in Listing

10, indicating that the minimization had converged. (The only differences were in the last significant digit

of two of the parameter uncertainty values).

Listing 7. Results of executing the modified template file (after all the fsolve messages).

Looking at the output, it can be seen that the correlation coefficient is very close to 1.0. The

magnitude of the scatter of the data from the line in the parity plot (Figure 1) is very small, and there are

no trends in the deviations in any of the residuals plots (Figures 2 through 4), so it can be concluded that

 ⋮

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and

the problem appears regular as measured by the gradient.

<stopping criteria details>

r_squared =
 9.9734e-01

Best Values for the Parameters:

pf =

 1.0804e+01
 2.2078e+00

 5.5261e+00

95% Confidence Intervals for the Parameters:

pf_u =
 3.3373e+00

 1.1961e+00
 2.2772e+00

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 6

the model does a very good job of fitting the experimental data. The best values of the model parameters

are θ1 = 10.8 ± 3.3, θ2 = 2.2 ± 1.2 and θ3 = 5.5 ± 2.3 (95% confidence intervals based upon 12 data).

Suppose, however, that the fit was OK, but not excellent. In that case, the parameter values that

were found by the process might correspond to a local minimum of the objective function and not to the

global minimum. It would then be advisable to repeat the entire fitting process, but with a starting guess

that was very different from the one used here (each of the three parameters equal to 1.0). It is possible

that doing so would lead to a converged solution where the fit was considerably better.

Alternatively, suppose that this was a kinetics problem and the parameters corresponded to rate

coefficients. Further suppose that even though the fit was very good, the values of the parameters didn’t

make sense as rate coefficients for the problem being solved. In that case, even though the fit is quite

good, it would again be advisable to repeat the entire fitting process with a very different initial guess. In

this case you’d be looking for a fit that was as good as the present fit, but where the resulting parameter

values did make sense physically.

When you reach the point where the fit is acceptably good and the parameters make sense on

physical grounds, you can probably stop looking for better sets of parameters. In contrast, if you never

reach the point where the fit is acceptably good and the parameters make sense on physical grounds,

you might want to consider the possibility that the model you are using simply isn’t appropriate.

Figure 1. Parity plot showing the predicted responses versus the measured responses.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 7

Figure 2. Residuals plot versus set variable x1.

Figure 3. Residuals plot versus set variable x2.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 8

Figure 4. Residuals plot versus set variable x3.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example S4.2 9

