
A First Course on Kinetics and Reaction Engineering

Supplemental Unit S3. Fitting Linear Models to Data

Defining the Problem
This supplemental unit describes how to use linear least squares to fit a mathematical model to a 

set of experimental data in which each data point consists of the value of a single, experimentally 

measured response variable, ŷ, and one or more experimentally set variables, xi. The model must have a 

linear form wherein the predicted value of the response variable, y, depends on the set variables as given 

in equation (1), where nset represents the number of set variables per experimental data point. The 

parameters mi and b in equation (1) must be unknown constants and nset must be equal to or greater than 

1. The parameter b in equation (1) is optional. The fitting process finds the best values for the unknown 

parameters, mi and b. This supplemental unit also describes how to assess the accuracy of the resulting 

model and decide whether or not it is acceptable.

y = b + mixi
i=1

nset

∑  (1)

In some instances in the analysis of kinetics data, the model takes the form given in equation (2) 

which does not have the required form. Specifically, in equation (2) the slope is a known constant (1 in 

this case), not an unknown constant (m). The methods discussed in this supplemental unit cannot be 

used to fit equation (2) to experimental data. Fortunately, numerical methods are not necessary in this 

case. Since x and y are known for each experimental data point, a corresponding value of b can be 

calculated. The best value for b is simply the average of the values calculated using each data point. The 

standard deviation of the values calculated using each data point can be used as a measure of the 

uncertainty in the best value of b. If the model is an accurate representation of the data, then the standard 

deviation will be a very small fraction of the best value.

y = x + b  (2)

Information and Data Required for Numerical Solution
This supplemental unit considers the use of computer software to fit a linear model of the form 

given in equation (1) to a corresponding set of data where each data point includes a value for the 

experimentally measured response variable, ŷ, and each of the experimentally set variables, xi. There are 

many different software packages that can be used to accomplish this task, but irrespective of the 

particular brand of software you use, you will need to provide three things as input to that software:

• the number, nset, of set variables (also called independent variables), xi
• whether or not the model includes an intercept, b
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• a set of experimental data points, each of which consists of a value for the response variable 

(also called the dependent variable), ŷ, and corresponding values for each of the set variables 

x1 through xnset .

The software will then compute and return the best value for each parameter (b and/or mi) in the 

model. It will also typically return the value of the correlation coefficient, r2, and some measure of the 

uncertainty in the value of each parameter (typically either the standard deviation or the 95% confidence 

interval). If the software does not generate them, the results can be used to generate a model plot (when 

there is only one set variable, x) or a parity plot and residuals plots (when there are two or more set 

variables) that can be used to assess how accurately the model represents the data.

Overview of the Numerical Method

For the purpose of describing what the software does, equation (1) will be re-written as shown in 

equation (3) which simply uses θi to represent both the slopes and the intercept. The objective is to fit that 

model to a set of experimental data points, where each data point data point l takes the form 

 
x1,l , x2,l ,!, xns ,l , ŷl( ) . The “^” over the response variable designates that it is the experimentally 

measured value; the absence of a “^” indicates a value predicted by the model, as in equation (3).

 y = θ1x1 +θ2x2 +!+θns
xns +θns+1

 (3)

The first task in fitting equation (3) to experimental data is to find the best values of the parameters, 

θ1 through θns+1
. Experimental measurements are subject to small random fluctuations, often called 

experimental noise. As a consequence, if the set variable values for data point l are substituted into the 

model equation, it will not predict a response value, yl, that is exactly equal to the experimentally 

measured response, ŷl. Instead, there will be an error, or residual, εl, associated with each data point l, as 

defined in equation (4). The “best” values for the parameters in the model equation are those parameter 

values that minimize the aggregate of these errors over all of the data points. For single response data, 

the overall aggregate error, Φ, is taken to equal the sum of the squares of the errors for each of the data 

points, equation (5), where ne represents the number of experimental data points. The squares of the 

errors are used instead of the errors themselves so that a large positive error for one data point is not 

offset by a large negative error for a different data point. The function, Φ, in equation (5) is called the 

objective function, and the “best” values of the parameters in the model equation are those parameter 

values that minimize Φ.1

  ε l = ŷl − yl  (4)
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1 Note that in equation (5) every data point is weighted equally. If each data point does not have the same 
variance, and if the variance associated with each data point is known or can be estimated, an 
appropriately weighted sum of the squares of the errors is a better objective function.



 
Φ = ε l

2

l=1

ne

∑ = ŷl − yl( )2
l=1

ne

∑ = ŷl −θ1x1,l −θ2x2,l −!−θns
xns ,l −θns+1( )2

l=1

ne

∑  (5)

If the parameters are to be chosen so that the resulting value of the error function, equation (5), is a 

minimum, then the partial derivative of Φ with respect to each of the parameters should be equal to zero. 

Equation (6) expresses this requirement for any one parameter θk. The derivative in equation (6) can be 

evaluated by differentiating equation (5). The result is given in equation (7) for k equal to 1 through ns, and 

in equation (8) for k = ns + 1. Equations (7) and (8) represent a set of ns + 1 equations, and those 

equations can be solved simultaneously to find the “best” values of the ns + 1 parameters.

  

∂Φ
∂θk

= 0  (6)

 
0 = ŷl −θ1x1,l −θ2x2,l −!−θns

xns ,l −θns+1( )xk ,l
l=1

ne

∑ ;     k = 1 through ns  (7)

 
0 = ŷl −θ1x1,l −θ2x2,l −!−θns

xns ,l −θns+1( )
l=1

ne

∑ ;      k = ns +1  (8)

For example, consider the application of equation (6) to the simplified model given in equation (9). 

In that case ns is equal to 1 with, θ1 is equal to m and θ2 equal to b. Applying equations (7) and (8) gives 

two equations containing m and b as unknowns. Those two equations can be solved to obtain 

expressions for the “best” values of m and b as given in equations (10) and (11).

y = mx + b  (9)
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ŷl
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Equations analogous to equations (10) and (11) can be derived for the parameters θk in model 

equation (3). When you use mathematics software to fit equation (3), or equivalently equation (1), to 
experimental data, the software is evaluating those equations and returning the best values of the 

parameters to you.
It is important to realize that the model parameters that minimize the objective function are not 

precisely known. That is, due to the statistical nature of the whole process, there is uncertainty in each of 
the model parameter values. For this reason, each parameter should be reported as the best value along 

with an estimate of the uncertainty in that value. Two common measures used to describe the uncertainty 
are the standard error of the parameter and the 95% confidence interval. The latter is a range of values 

chosen such that there is a 95% probability that the true value of the parameter lies within that range. 
There are standard statistical methods for estimating either the standard error or the 95% confidence 

intervals for the parameters, but they won’t be discussed here (consult a good statistics textbook). Most 
software for fitting linear equations to experimental data also performs these statistical calculations and 

returns either the standard error or the 95% confidence interval for each parameter.
Just because the parameters found in a regression analysis minimize the objective function (i. e. 

the overall error), this does not guarantee that the fit is a good one. For example if one had a set of data 
points that fell perfectly on a parabola, one could still use regression analysis to fit a straight line to the 

data. The result would be the slope and intercept of the straight line that best fit the data. However, as 
seen in Figure S3.1, the “best” straight line still wouldn’t fit the data very well. Normally one expects that 

there will be some “scatter” of the data about the line. That is, the experimental data points will not fall 
exactly on the plot of the model. However, this scatter should be random; it should not be systematic. 

That is, there should not be any apparent trend in the scatter and it should not correlate with any aspect 
of the experimental work. The data in Figure S3.1 show a systematic scatter about the linear function.

There are statistical measures of how well a model fits the data. One such computed measure of 
the “goodness of fit” is known as a correlation coefficient which is defined in equation (12). In equation 

(12), a bar over a quantity indicates the average of that quantity taken over all the data points. The 

correlation coefficient is often denoted by the variable r, and it, or its square, offer a measure of how well 

the model describes the data. When r2 is nearly equal to 1.0, the model offers a very good representation 

of the experimental data whereas an r2 value near zero indicates a model that does a poor job of 

describing the experimental results. Most software for fitting linear equations to experimental data will 

calculate and return the value of r or r2.
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 (12)
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Figure S3.1. Straight line fit to a set of data that fall exactly on a parabola. While the “best” slope of the 
straight line is -2 and the “best” intercept is 8.6667, the line does not fit the data well.

A plot of the experimental data as points and the model function as a line on the same set of 

coordinate axes, as in Figure S3.1, is called a model plot. When the fit is good, the deviations of the 
points from the line should be small and random, but a plot like this can only be constructed if the model 

and data only have one set variable. If the model has two or more set variables, there are two other types 
of plots that can be used to assess how well the equation fits the data. One is called a parity plot or a 

rectifying plot. In it, one simply plots the experimentally measured value, ŷl, for each data point versus the 

value, yl, for the same data point that is predicted by the best-fit model. If the fit is perfect, all the data 

points will lie on a diagonal line passing through the origin. The quality of the fit is indicated by the 
magnitude of the deviations away from the diagonal line.

A parity plot will show the magnitude of deviations between the experimental data and the model’s 
predictions, but it may not reveal systematic trends in the deviations. For this, a second type of plot, 

called a residuals plot, can be used. To construct a residuals plot, one uses the fitted equation and the 

data to calculate the error, εl, for each data point. Then the error can be plotted against each of the set 
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variables. The errors can also be plotted against other properties that might affect the quality of the fit or 
data. The expected behavior would be for the errors to scatter randomly about zero; if they exhibit 

systematic deviations from zero, this suggests that the model has failed to capture the full functional 
dependence of the response variable upon the abscissa variable. As noted, one can also plot the errors 

against, for example, the technician who performed the experiment or the supplier of the reactants to see 
if the error correlates with these factors.

Some software for fitting linear equations to experimental data will generate a model plot or a parity 
plot and residuals plots. However, if the software does not do this automatically, it is easily done after the 

fitting has been completed.

MATLAB Script Files
MATLAB provides a number of built-in functions that can be used to perform the tasks described in 

the preceding section. It takes very few lines of MATLAB code to set up a file that will fit a single response 

linear model to appropriate data, calculate the regression coefficient and 95% uncertainty limits, and 
make appropriate model, parity and residuals plots. However, to allow you to focus more on kinetics and 

reaction engineering and less on computer programming, three MATLAB script files have been created 
for your use. These files are named “FitLinSR.m”, “FitLinmbSR.m” and “FitLinmSR.m”; these filenames 

are meant to convey the purpose of the script. Thus FitLinSR.m fits a general linear model, equation (1), 
to single response data, FitLinmbSR.m fits a linear equation with slope m and intercept b, equation (9), 

to single response data and FitLinmSR.m fits a linear equation with slope m, but no intercept, equation 
(13), to single response data. Each of these scripts will perform the fitting (i. e. calculate the best 

parameter values), calculate the 95% confidence limits for each parameter, calculate the correlation 

coefficient, r2, and generate either a model plot or a parity plot and residuals plots for each set variable.

y = mx  (13)

The scripts require no modification in order to be used. They simply call the standard MATLAB 

functions mentioned in the previous section to perform the calculations described earlier, including the 
statistical calculations that were not described. They also process the results to make plots that can be 

used in assessing the quality of the fit. You are encouraged to read through the script files and the related 
MATLAB documentation in order to obtain a greater appreciation of how they work. Three “How-To” files 

are provided as part of this supplemental unit. These files give step by step instructions for using each of 
the MATLAB script files to fit the corresponding model to appropriate single response data. Consequently, 

step by step instructions for using the script files will not be presented here.
There is one very important requirement for the use of the script file FitLinSR.m to fit a 

general linear model, equation (1) to experimental data. The MATLAB function “regress” that is used 
within FitLinSR.m requires that there be an intercept. If the model equation does not have an intercept, it 

must be converted into a form that does have one. Otherwise, as noted in the MATLAB documentation, 
the 95% confidence limits returned by the MATLAB script will be wrong. Fortunately, it is trivially easy to 

convert a linear equation without an intercept into a linear equation with an intercept.
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To illustrate, suppose one had experimental data that involved four set variables, x1 through x4, and 

a linear model without an intercept, equation (14). Dividing equation (14) by x4 gives equation (15). Four 

new variables can be defined as in equations (16) through (19). Substitution of these new variables in 
equation (15) leads to equation (20) which is linear and has an intercept. Thus, instead of fitting equation 

(14) to the original (y, x1, x2, x3, x4) data, you would calculate y′, x′1, x′2, and x′3 for each data point and 

then fit equation (20) to those data. In this way, MATLAB will not return erroneous 95% confidence 
intervals for the parameters.

y = θ1x1 +θ2x2 +θ3x3 +θ4x4  (14)

y
x4

= θ1
x1
x4

+θ2
x2
x4

+θ3
x3
x4

+θ4  (15)

′y = y
x4

 (16)

′x1 =
x1
x4

 (17)

′x2 =
x2
x4

 (18)

′x3 =
x3
x4

 (19)

′y = θ1 ′x1 +θ2 ′x2 +θ3 ′x3 +θ4  (20)
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