A First Course on Kinetics and Reaction Engineering

How To Use FitLinSR.m

- 1. Verify that FitLinSR.m is the appropriate script to use
 - a. The data points must be of the form $(x_1, x_2, \dots, x_{n_r}, \hat{y})$
 - b. The model being fit to those data must be of the form $y = m_1 x_1 + m_2 x_2 + \dots + m_{n_e} x_{n_e} + b$
 - i. If the model is missing the final parameter, *b*, convert it to the form above (see the informational reading for Supplemental Unit S3).
- 2. Make sure that FitLinSR.m is stored in the current MATLAB working directory or in a directory that is in the MATLAB search path
- 3. Create a matrix named x in the MATLAB workspace
 - a. The first column of x should contain the values of x_1 for each of the data points, one per row; the second column should similarly contain the values of x_2 , and so on through column n_s
 - b. Column $(n_s + 1)$ of x should contain the value 1.0 in every row
- 4. Create a column vector named y_hat in the MATLAB workspace; it should contain the values of \hat{y} for each of the data points, one per row
- 5. Execute the script by typing the following at the MATLAB command prompt: FitLinSR
- 6. The following quantities will be listed in the MATLAB command window
 - a. r_squared the correlation coefficient for the fit
 - b. m a column vector containing the fitted slopes m_1 through m_{n_1}
 - c. m_u a column vector containing the ± 95% confidence limits for the fitted slopes
 - d. b the fitted intercept, b
 - e. b_u the ± 95% confidence limits for the fitted intercept
- 7. The following figures will be displayed
 - a. A parity plot
 - b. A set of residuals plots with each of the set variables as the abscissa