
A First Course on Kinetics and Reaction Engineering

Example 39.1

Problem Purpose
This example illustrates the analysis, using the two film model, of a reactor wherein a gas-liquid 

reaction occurs.

Problem Statement
A gas mixture containing 15 % A is fed to an isothermal steady state CSTR at a rate of 0.002 m3 

min-1. A solution containing B at a concentration of 3.0 mol L-1 is also fed to the reactor at a rate of 0.06 L 

min-1. The reactor system operates at a constant temperature of 20 °C and a constant pressure of 5.0 
atm, and the liquid density is essentially constant. An agitator/gas recirculation system perfectly mixes 

each of the two phases, separately. The liquid phase volume is equal to 1.0 L, and the gas is dispersed 
as bubbles in the liquid such that the bubble area per liquid volume is constant and equal to 445 m-1. The 

partial pressure mass transfer coefficient for A is equal to 0.83 mol m-2 atm-1 s-1, the liquid phase mass 
transfer coefficient for A is equal to 0.053 cm s-1 and the Henry’s law constant for A is equal to 50.0  L atm 

mol-1. The diffusion coefficients for A and B may be taken to be constant and equal to 2.1 x 10-5 and 7.25 
x 10-6 cm2 s-1, respectively. A is the only gas phase component that is soluble in the liquid phase, and 

none of the components of the liquid are volatile. Thus reaction (1) takes place only within the liquid 
phase where the rate expression is given by equation (2) with the rate coefficient equal to 605 L mol-1 

min-1. Ignoring the curvature of the bubble surface and assuming that the amount of reaction taking place 
in the liquid film is significant, calculate the conversion of A.

A + B → Z (1)

r = k A[ ] B[ ]  (2)

Problem Analysis

The problem statement describes a steady state system wherein the gas phase component, A, is 

transferred to the liquid phase where it reacts with B. The problem statement alludes to the liquid film, so 

this mass transfer will be modeled using the two film model described in the informational reading for this 

unit. A schematic representation of the system is presented in Figure 1. The bulk gas, on the left side of 

the left dashed line is perfectly mixed; the partial pressure of A in this region is denoted as PA,g. The gas-

liquid interface is represented by the vertical solid line; the region between the left dashed line and the 

gas-liquid interface is the gas film. The interface is defined as the origin of the x axis with increasing x 

being in the direction perpendicular to the interface and into the liquid (to the right of the interface as 

drawn). At the interface, the gas phase pressure of A is denoted as PA,i, and the liquid phase 

concentration of A as CA,i; these two quantities are assumed to be related to each other through Henry’s 
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law. The region between x = 0 and x = xL (right dashed line) represents the liquid film. Within this region, 

the concentrations of A and B are denoted as CA,f and CB,f, and both of these quantities vary with x. The 

region on the right, where x > xL represents the bulk liquid which is also perfectly mixed. The bulk liquid 

concentrations of A and B are denoted as CA,l and CB,l, and they do not depend on x. A gas mixture 

containing A as one component flows into the reactor and a gas mixture containing less A flows out of the 

reactor. These flows are denoted as  !nA,g
0  and ṅA,g, respectively. A liquid feed containing B enters the 

reactor, with the inlet molar flow rate of B denoted as  !nB,l
0 . Since the density of the liquid is constant, a 

liquid stream with the same volumetric flow rate,  
!VL ,  leaves the reactor; the molar flow rates of A and B 

in this stream are denoted as ṅA,l and ṅB,l.

The system can be modeled by writing and solving separate mole balances on each of the two bulk 
phases present. Since the system is isothermal, the mole balances can be solved independent of energy 

balances. Since reaction only occurs in the liquid phase, only the liquid phase mole balance will include a 
rate term, but the balances for both phases will include terms representing the transfer of the reagent A 

from the gas phase into the gas film or from the liquid film into the bulk liquid, as appropriate. The mole 
balances on the two bulk phases will be coupled to mole balances on the liquid film such that analysis of 

the reactor will require solution of all of the mole balances.

Figure 1. Schematic representation of the gas-liquid reactor (not to scale).

Problem Solution

The following quantities are specified in the problem statement: yA,g
0 = 0.15,  

!Vg
0  = 0.002 m3 min-1, 

CB,l
0  = 3.0 mol L-1,  

!VL = 0.06 L min-1 (the liquid density is constant, so the inlet and outlet liquid phase 
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volumetric flow rates are equal), T = 20 °C, P = 5.0 atm, VL = 0.001 m3, SV = 445 m-1, kG,P = 0.83 mol m-2 

atm-1 s-1, kL = 0.053 cm s-1, hA = 50.0 L atm mol-1, DA = 2.1 x 10-5 cm2 s-1, DB =  7.25 x 10-6 cm2 s-1, and k 

= 605 L mol-1 min-1. Since the diffusion coefficient of A in the liquid and the liquid mass transfer coefficient 

are specified, the liquid film thickness can be calculated according to equation (3). The problem asks that 

the conversion of A, fA, be calculated.

xL =
DA

kL
 (3)

The problem statement indicates that the gas phase may be assumed to be perfectly mixed. As 

such, a gas phase mole balance on the reactant A will resemble an ideal CSTR mole balance except 
there will be no reaction rate term. Instead, there will be a term representing the A that is transferred to 

the liquid phase. If NA is used to represent the flux of A in the x direction, the bulk gas phase mole 

balance on A takes the form given in equation (4). In writing this equation it was noted that the flux of A 

from the bulk gas into the gas film must equal the flux of A from the gas film into the liquid because the 

system operates at steady state and no reaction occurs in the gas phase.

 !nA,g
0 − SVVl NA x=0 − !nA,g = 0  (4)

A mole balance on A in the bulk liquid can also be written. Again, since the liquid is perfectly mixed, 

this will look like a CSTR mole balance with two exceptions. First, there is no A present in the liquid feed, 
so that term is absent, but, second, A is transferred into the liquid phase from the liquid film at the 

boundary of that film, x = xL. Again letting NA represent the flux of A in the x direction, the liquid phase 

mole balance on A is given in equation (5). The mole balance on B in the bulk liquid phase, equation (6), 
is also similar to a CSTR mole balance, with the exception that an additional term is needed to represent 

the B that is transferred from the bulk liquid into the liquid film.

 
SVVl NA x=xL

− kVlCA,lCB,l − !nA,l = 0  (5)

 
!nB,l
0 + SVVl NB x=xL

− kVlCA,lCB,l − !nB,l = 0  (6)

The mole balances on the bulk gas and liquid constitute a set of three non-linear algebraic 

equations. Hence, these three equations can be solved numerically to find the values of three unknowns. 

The unknowns can be taken to be the gas phase outlet molar flow rate of A , ṅA,g, and the liquid outlet 

molar flow rates of A and B, ṅA,l and ṅB,l. In order to solve the equations numerically for these three 

quantities, it will be necessary to provide guesses for each of their values along with code that evaluates 

the left hand sides of equations (4) through (6) given values for the unknowns. Of the quantities 

appearing in the equations, SV, VL and k are known from the problem statement. Therefore, in order to 
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evaluate the left-hand sides of equations (4) through (6), the code we provide must first calculate  !nA,g
0 ,  

NA x=0 , NA x=xL
, CA,l, CB,l,  !nB,l

0  and NB x=xL
.

The inlet gas phase molar flow rate of A can be calculated from the specified inlet gas phase 
volumetric flow rate and composition by use of the ideal gas law, equation (7). The inlet liquid phase 

molar flow rate of B can be computed from the liquid volumetric flow rate and the feed concentration of B, 

equation (8). Recalling that the code we must provide will be given values of ṅA,g, ṅA,l and ṅB,l, the ideal 

gas law can be used to calculate the partial pressure of A in the gas phase, equation (9). In order to do 

so, the outlet gas volumetric flow rate must be calculated; it won’t equal the inlet volumetric flow rate 
because some A will have been transferred to the liquid phase, equation (10). Application of the ideal gas 

law gives the outlet gas volumetric flow rate, equation (11). Again recalling that the code we must provide 

will be given values of ṅA,g, ṅA,l and ṅB,l, the liquid phase concentrations of A and B can be calculated 

using the specified liquid volumetric flow rate, equations (12) and (13).

 
!nA,g
0 =

!Vg
0P
RT

yA,g
0  (7)

 !nB,l
0 = !VLCB,l

0  (8)

 
PA,g =

!nA,gRT
!Vg

 (9)

 
!ntotal ,g = !ntotal ,g

0 − !nA,g
0 + !nA,g =

P !Vg
0

RT
− !nA,g

0 + !nA,g  (10)

 
!Vg =
!ntotal ,gRT

P
 (11)

 
CA,l =

!nA,l
!Vl

 (12)

 
CB,l =

!nB,l
!Vl

 (13)

At this point, the code we provide to solve equations (4) through (6) still needs to calculate NA x=0 , 

NA x=xL
 and NB x=xL

. In order to do so, it will first need to solve mole balances on A and B in the liquid 

film (between x = 0 and x = xL). The mole balance on A in the liquid film is given in equation (14), with the 

boundary conditions given in equations (15) and (16). The first boundary condition specifies that Henry’s 

law is obeyed at the interface, and the second boundary condition simply requires the concentration of A 

to equal the bulk liquid concentration at the interface between the bulk liquid and the liquid film. The mole 
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balance on B in the liquid film and its boundary conditions are given in equations (17) through (19). The 

first boundary condition requires the flux of B at the interface to equal zero since B is non-volatile. The 

second boundary condition is like that for A; it requires the concentration of B to equal the bulk liquid 

concentration at the interface between the bulk liquid and the liquid film.

DA

d 2CA, f

dx2 = kCA, fCB, f      ⇒      
d 2CA, f

dx2 = k
DA

CA, fCB, f  (14)

CA, f 0( ) = CA,i =
PA,i
hA

 (15)

CA, f xL( ) = CA,l  (16)

DB

d 2CB, f

dx2 = kCA, fCB, f      ⇒      
d 2CB, f

dx2 = k
DB

CA, fCB, f  (17)

NB x=0 = −DB

dCB, f

dx x=0

= 0  (18)

CB, f xL( ) = CB,l  (19)

Equations (14) through (19) constitute a set of boundary value ODEs, and as noted, the code that is 
provided to solve equations (4) through (6) will need to solve equations (14) through (19) numerically. 

Supplemental Unit S6 provides an overview of how this is done and the information and code that must 
be provided. For present purposes it will simply be noted that the only additional quantity that is needed is 

the interfacial concentration of A or the interfacial partial pressure of A, since they are related as given in 
equation (15). The interfacial partial pressure can be calculated using the gas phase mass transfer 

coefficient as shown in equation (20).

kG ,P PA,g − PA,i( ) = NA x=0      ⇒      kG ,P PA,g − PA,i( )− NA x=0 = 0  (20)

At first glance it may seem as if we are confronted with a chicken and egg problem. We need the 

value of NA x=0  in order to solve the bulk phase mole balances. We can calculate NA x=0 upon solving the 

film mole balances, but in order to solve the film mole balances, we need NA x=0  so we can calculate PA,i 

using equation (20). It turns out that when the equations are being solved numerically this isn’t actually a 

problem. There are a few different ways to formulate the numerical solution, but some are more confusing 

than others. Hopefully the approach to be described here is not too confusing.

Let’s go back, and instead of solving the just the bulk phase mole balances, equations (4) through 

(6) for ṅA,g, ṅA,l and ṅB,l, let’s add in equation (20), giving us four equations and let’s solve equations (4), 

(5), (6) and (20) numerically to find values of ṅA,g, ṅA,l, ṅB,l and PA,i. To do so, we’ll need to provide 
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guesses for each of their values along with code that evaluates the left hand sides of equations (4), (5), 

(6) and (20) given values for the unknowns: ṅA,g, ṅA,l, ṅB,l and PA,i. The code we provide can still use 

equations (7) through (13) to calculate   !nA,g
0 , CA,l, CB,l,  !nB,l

0 , and PA,g. The problem specifies values for 

SV, VL, k and kG,P, again leaving NA x=0 , NA x=xL
 and NB x=xL

 as the only unknown quantities appearing 

in equations (4), (5), (6) and (20).

As previously noted, these fluxes can be calculated after first solving the film mole balances, 
equations (14) through (19). Thus the code we provide to evaluate equations (4), (5), (6) and (20) will first 

have to call a mixed boundary ODE solver. This time, however, the code we provide to evaluate equations 

(4), (5), (6) and (20) will be given a value for PA,i, so it will have all the values that are needed to solve the 

film mole balances. The numerical solution of equations (14) through (19) will yield values of CA,f, CB,f, 

dCA, f

dx
and 

dCB, f

dx
at discrete values of x (mesh points) between 0 and xL. The fluxes required to evaluate 

the left-hand sides of equations (4), (5), (6) and (20) can then be calculated using equations (21) through 

(23).

NA x=0 = −DA

dCA, f

dx x=0

 (21)

NA x=xL
= −DA

dCA, f

dx x=xL

 (22)

NB x=xL
= −DB

dCB, f

dx x=xL

 (23)

Once those fluxes have been calculated, the left-hand sides of equations (4), (5), (6) and (20) can 
be evaluated. In this way, everything that is needed to solve equations (4), (5), (6) and (20) numerically 

and obtain the values of ṅA,g, ṅA,l, ṅB,l and PA,i is available. The problem asks for the conversion of A which 

can be computed using equation (24).

 
fA =
!nA,g
0 − !nA,g − !nA,l
!nA,g
0  (24)

Upon performing the calculations as described, one finds the conversion to be 80%. If the liquid film 

had been ignored (the bulk liquid concentration of A assumed to be in equilibrium with the partial pressure 
of A at the interface) the conversion would incorrectly be found to equal 99%. It should be noted that this 

problem makes a number of simplifying assumptions that probably would not be valid in the analysis of a 
real reactor system. The purpose of the problem is to illustrate the coupling between the bulk gas, liquid 

film and bulk liquid balance equations and the mathematics needed to solve them. 
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Calculation Details Using MATLAB

The code for performing the calculations for this example was divided into three MATLAB functions. 

The first, Example_39_1.m stores the quantities specified in the problem statement, along with other 

constants that can be calculated from them, in a structure array named given (see the calculation details 

for Example 38.1 for a discussion of structure arrays). It then makes a guess for the four unknowns in 

equations (4), (5), (6) and (20) and calls a second MATLAB function, Example_39_1_bulk.m which solves 

those equations. Once the equations have been solved, it concludes by calculation of the conversion. The 

code is straightforward, as can be seen in Listing 1, and won’t be discussed further.

Listing 1. MATLAB function Example_39_1

function Example_39_1
%Example_39_1 Code used in the solution of Example 39.1 of AFCoKaRE
 
    % Known quantities and constants entered in a structure array
    given = struct;
    given.yA0 = 0.15;
    given.VFRg0 = 2.0E-3; % m^3/min
    given.CBl0 = 3.0*1000; % mol/m^3
    given.VFRl = 0.06E-3; % m^3/min
    given.T = 20+273.15; % K
    given.P = 5.0; % atm
    given.Vl = 1.0E-3; % m^3
    given.SV = 445.; % /m
    given.kGP = 0.83*60; % mol/m^2/atm/min
    given.kL = 0.053/100*60; % m/min
    given.hA = 50.0E-3; % atm m^3/mol
    given.DA = 2.1E-5/1.0E4*60; % m^2/min
    given.DB = 7.25E-6/1.0E4*60; % m^2/min
    given.k = 6.05E2/1000; % m^3/mol/min
    given.R = 0.08206/1000; % m^3atm/mol/K
    given.xL = given.DA/given.kL; % eq 3
    given.nAg0 = given.VFRg0*given.P/given.R/given.T*given.yA0; % eq 7
    given.nBl0 = given.VFRl*given.CBl0; % eq 8
    
    % Solve the bulk liquid and gas mole balances
    guess = [
        0.1*given.nAg0 % nAg guess
        0.001*given.nBl0 % nAl guess
        given.nBl0/3. % nBl guess
        given.P*given.yA0/2. % PAi guess
        ];
    [nAg,nAl,nBl,PAi] = Example_39_1_bulk(given,guess);
    
    % Calculate and report the conversion
    pct_conv = 100*(given.nAg0 - nAg - nAl)/given.nAg0 % eq 24
 
end % of Example_39_1
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Equations (4), (5), (6) and (20) are non-linear algebraic equations, so they can be solved 
numerically by modifying the template file SolvNonDif.m as described in Supplemental Unit S2. By this 

point in the course, the use of this template file to solve algebraic equations should be quite familiar, so 
the description of the modifications will be succinct. The only difference here is that the internal function 

that evaluates the equations must call a boundary value ODE solver. A copy of SolvNonDif.m was saved 
as Example_39_1_bulk.m. The long initial comment was replace with a short one describing the purpose 

of the function and the function declaration was changed so that the structure array, given, and a vector 

named guess (containing guesses for the value of the unknowns) are passed in as arguments and the 

final values of the unknowns are returned. Next, the internal function, evalEqns, was modified to return 

the values of the left-hand sides of equations (4), (5), (6) and (20). Specifically, the values of the four 

unknowns provided to evalEqns were extracted and given meaningful names. The total outlet molar gas 

flow rate, outlet volumetric gas flow rate, bulk partial pressure of A, liquid phase concentrations of A and B 

and the rate were then calculated using equations (2) and (10) through (13).
A third MATLAB function, Example_39_1_film.m, was then called to solve the liquid film mole 

balances and calculate the fluxes of A and B at x = 0 and x = xL. That function is described below. Once 

the fluxes have been calculated, the left hand sides of equations (4), (5), (6) and (20) are evaluated and 

stored in the vector f to be returned by evalEqns, and that completes the modification of the internal 

function evalEqns. The final modification to the template file SolvNonDif.m involved extracting the 

values of the unknowns from the solution vector, z, so that they would be returned. All these modifications 

are shown in Listing 2.
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Listing 2. MATLAB function Example_39_1_bulk

The liquid film mole balances are second order boundary value ODEs, equations (14) and (17). The 
MATLAB solver that will be used, bvp4c, requires that these ODEs be converted into a set of first order 

ODEs. Letting y1 represent CA,f and y3 represent CB,f  followed by defining y2 according to equation (25) 

function [nAg,nAl,nBl,PAi] = Example_39_1_bulk(given,guess)
%Example_39_1_bulk Solve the bulk phase mole balances in Example 39.1 of 
AFCoKaRE
 
    % Function that evaluates the bulk mole balance equations
    function f = evalEqns(z)
        % Extract the unknowns
        nag = z(1);
        nal = z(2);
        nbl = z(3);
        pai = z(4);
       
        % Calculate quantities appearing in the bulk mole balance equations
        ntotalg = given.P*given.VFRg0/given.R/given.T - given.nAg0 + nag; % 
eq 10
        VFRg = ntotalg*given.R*given.T/given.P; % eq 11
        PAg = nag/ntotalg*given.P;
        CAl = nal/given.VFRl; % eq 12
        CBl = nbl/given.VFRl; % eq 13
        rate = given.k*given.Vl*CAl*CBl;
        if (rate < 0) 
            rate = 0.;
        end
        
        % Solve the liquid film mole balances
        [NA0, NAxL, NBxL] = Example_39_1_film(given,pai,CAl,CBl);
        
        % Evaluate the bulk mole balance equations
        f = [
            given.nAg0 - given.SV*given.Vl*NA0 - nag; % eq 4
            NAxL*given.SV*given.Vl - rate - nal; % eq 5
            given.nBl0 + NBxL*given.SV*given.Vl - rate - nbl; % eq 6
            given.kGP*(PAg - pai) - NA0; % eq 20
        ];
    end % of internal function evalEqns
    
    % Solve the bulk phase mole balance equations
    z = fsolve(@evalEqns, guess);
    nAg = z(1);
    nAl = z(2);
    nBl = z(3);
    PAi = z(4);
    
end % of Example_39_1_bulk.m
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gives one first order ODE. Substitution into equation (14) gives the second first order ODE, equation (26) 

where equations (25) and (26) are completely equivalent to equation (14). Similarly defining y4 according 

to equation (27) and substituting into equation (17) gives two first order ODEs, equations (27) and (28), 

that are completely equivalent to equation (17). Substitution of the new variables into the boundary 
conditions, equations (15), (16), (18) and (19), results in expressions for the boundary conditions in terms 

of the new variables, equations (29) through (32).

dy1
dx

= y2  (25)

dy2
dx

= k
DA

y1y3  (26)

dy3
dx

= y4  (27)

dy4
dx

= k
DB

y1y3  (28)

y1 0( ) = CA,i =
PA,i
hA

 (29)

y1 xL( ) = CA,l  (30)

y4 0( ) = 0  (31)

y3 xL( ) = CB,l  (32)

Having re-written the liquid film mole balances in this form, they can be solved by modification of 

the MATLAB template file SolvBVDif.m as described in Supplemental Unit S6. A copy of SolvBVDif.m was 
saved as Example_39_1_film.m and modified accordingly. The initial comment was deleted and replaced 

with a succinct comment stating the purpose of the modified file. The function declaration was changed to 
match the filename. In order to solve equations (25) through (28), values for the interfacial partial 

pressure of A and the bulk liquid concentrations of A and B are needed along with constant quantities 
given in the problem statement. Therefore the function declaration was changed so that these quantities 

are passed into the function as arguments. Solving equations (25) through (28) will yield the values of 

CA,f, CB,f, 
dCA, f

dx
and 

dCB, f

dx
at discrete values of x (mesh points) between 0 and xL. However, we are 

interested in the flux of A at x = 0 and x = xL and the flux of B at x = xL. Therefore the function declaration 

was additionally changed so that these quantities are returned.

The next things in the template file are definitions of two internal functions named bvodes and bvs.  

The first of these functions, bvodes, must be modified so that given values for the dependent (y1 through 
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y4) and independent (x) variables, it returns a vector containing the values of the right-hand sides of 

equations (25) through (28). In this case, everything needed in order to do that is available in the structure 

array, given. The internal function, bvs, is passed the values of the dependent variables at the two ends 

of the range of the independent variable. Hence, in the present case, y_at_start is a vector containing 

the values of y1 through y4 at x = 0 and y_at_end is a vector containing the values of y1 through y4 at  

x = xL. This function must be modified so that it returns the corresponding error in each of the boundary 

conditions. In the present case, if the boundary condition in equation (29) is satisfied, y1(0) − CA,i should 

equal zero. If that term does not equal zero, its value is the error in the first boundary condition. If the 

boundary condition in equation (30) is satisfied, y2(xL) − CA,l should equal zero, and if it does not, its 

value is the error in the second boundary condition. Similarly, y4(0) should equal zero and y3(xL) − CB,l 

should equal zero when the boundary conditions of equations (31) and (32) are satisfied. Thus, the 

internal function, bvs, is modified to return these values. All of the modification described to this point are 

shown in Listing 3.

Listing 3. Modifications to the internal functions bvodes and bvs.

function [NA0, NAxL, NBxL] = Example_39_1_film(given,PAi,CAl,CBl)
%Example_39_1_film Solve the liquid film mole balances in Example 39.1 of 
AFCoKaRE
 
    % Function that evaluates the derivatives
    function dydx = bvodes(x,y)
        rate = given.k*y(1)*y(3);
        if (rate < 0) 
            rate = 0;
        end
        dydx = [
            y(2)
            rate/given.DA
            y(4)
            rate/given.DB
        ];
    end % of internal function bvodes
 
    % Function that calculates the errors at the boundaries
    function res = bvs(y_at_start,y_at_end)
        res = [
            y_at_start(1) - PAi/given.hA
            y_at_end(1) - CAl
            y_at_start(4)
            y_at_end(3) - CBl
        ];
 
    end % of internal function bvs

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 39.1 11



The template file must next be modified to discretize the range of the independent variable by 

specifying its lower limit and its upper limit along with the number of elements to divide the range into. 

Here I arbitrarily chose to divide the range into 20 parts. Following that, a guess for each of the 

dependent variables must be provided. Even though the x direction has been divided into 20 sections, we 

only need to provide a single guess for each of the dependent variables. I used the average of the 

interfacial and bulk concentrations as a guess for CA,f; the change in CA,f across the film divided by the 

film thickness as a guess for 
dCA, f

dx
; one-half of the bulk concentration of B as a guess for CB,f and the 

bulk concentration of B divided by the film thickness as a guess for 
dCB, f

dx
.

The final modification appears after equations (25) through (28) have been solved. It simply 
involves using the results to calculate the fluxes in equations (21) through (23) so that their values will be 

returned. All of these modifications are shown in Listing 4. At that point, the calculations can be performed 
by simply typing “Example_39_1” at the MATLAB command prompt (assuming all three files are in the 

current working directory or the MATLAB search path). Doing so generates the output shown in Listing 5.

Listing 4. Modifications to set up the mesh, provide guesses and calculate the desired fluxes.

    % Set up the initial mesh
    x_range_low = 0.0;
    x_range_high = given.xL;
    n_mesh_points = 20;
    
    % The next line creates an array for the independent variable
    x = linspace(x_range_low,x_range_high,n_mesh_points);
 
    % Guesses
    yinit = [
        (PAi/given.hA + CAl)/2
        (PAi/given.hA - CAl)/given.xL
        CBl/2
        -CBl/given.xL
    ];
 
    % Create a structure containing the mesh and guesses
    solinit=bvpinit(x,yinit);
 
    % Solve the odes
    result = bvp4c(@bvodes,@bvs,solinit);
    
    % Calculate any other desired quantities from the results
    i_last_mesh = length(result.x);
    NA0 = -given.DA*result.y(2,1);
    NAxL = -given.DA*result.y(2,i_last_mesh);
    NBxL = -given.DB*result.y(4,i_last_mesh);
 
end % of file Example_39_1_film.m
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Listing 5. Results generated upon execution of the function.

>> Example_39_1

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

pct_conv =

   79.9336
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