
A First Course on Kinetics and Reaction Engineering

Unit 38. Heterogeneous Catalytic Reactions

Overview
Unit 38 presents an abbreviated and simplified discussion of the modeling of packed bed reactors 

where significant concentration and/or temperature gradients exist. Such gradients may be present in the 
boundary layer between the bulk fluid and the external surface of the catalyst particles, or they may exist 

within the porous catalyst particles themselves. Unit 38 defines the Thiele modulus for first order reactions 
in spherical catalyst particles and demonstrates its relationship to the catalyst effectiveness factor, which 

is also defined in the unit. The unit shows how the ideal PFR model can be modified to account for such 
gradients by incorporation of an effectiveness factor. It also illustrates how an independent set of design 

equations for the catalyst phase can be formulated and used in conjunction with a set of design equations 
for the fluid phase in situations where the effectiveness factor changes along the length of the reactor.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• Thiele modulus
• Effectiveness factor 

Upon completion of this unit, you should be able to perform the following specific tasks and be able to 
recognize when they are needed and apply them correctly in the course of a more complex analysis:

• Describe the limiting behavior of the effectiveness factor as the Thiele modulus varies and identify 
the preferred range of values for the Thiele modulus.

• Use the effectiveness factor to modify ideal reactor design equations so that they account for 
concentration gradients associated with heterogeneous catalytic reactions.

• Formulate design equations for the catalyst phase in a packed bed reactor and solve them 
simultaneously with design equations for the fluid phase like those in Unit 37.

Information
When a porous solid is used to catalyze a gas phase reaction, there is a possibility that there will be 

concentration and temperature gradients between the bulk fluid and the external surface of the catalyst 
particles as well as concentration and temperature gradients within the pores of the catalyst. These 

phenomena were discussed in Unit 12 with respect to their effect upon the measurement of reaction 
rates. In that situation, every effort should be taken to operate the reactor in a way that minimizes such 

gradients so that the concentration and temperature everywhere within the catalyst particle are essentially 
equal to the bulk fluid concentration and temperature. Doing so when using a laboratory reactor may 

require some effort, but it is necessary if one seeks to generate accurate kinetics data. As noted in Unit 
37, in a commercial reactor it may not be easy, necessary or even desirable to operate a reactor so that 

concentration and temperature gradients are negligible. In those situations, in order to model the reactor 
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accurately, one cannot use the ideal reactor design equations, but instead must use design equations that 
account for the presence and effects of the gradients.

Several approaches are possible to account for concentration and temperature gradients 
associated with heterogeneous catalysts. This unit does not present a comprehensive discussion of the 

topic, but instead considers one of the simplest of situations, illustrating one approach to accounting for 
concentration gradients. In particular, this unit will only consider concentration gradients (an analogous 

approach can be used to account for temperature gradients), it only considers a system where Fick’s law 
describes diffusion and where there is equal and opposite counter-diffusion, and it utilizes a pseudo-

continuum model for the porous solid catalyst (there are other ways to model porous catalysts). In short, 
the unit is intended to provide an introductory basis for those who wish to learn more through independent 

study or a second course on reaction engineering. 
Accounting for concentration gradients associated with heterogeneous catalysts requires some sort 

of model for the pore structure of the catalyst. Each catalyst particle is likely to have its own unique pore 
structure. As a result, it is not practical to attempt to construct an exact physical model for the pore 

structure. Instead, common approaches are to construct a network of pores that are interconnected at 
nodes where a specified number of pores meet or to assume straight pores with circular cross sections 

and a distribution of pore diameters. A simpler approach, that will be used here, is to adopt a pseudo-
homogeneous or pseudo-continuum pore model.

 The pseudo-continuum pore model completely ignores the pore 
structure of the solid. Instead, it treats the catalyst particle as if it is a 

single homogeneous phase. It further assumes that the reactants 
diffuse in a straight line in the radial direction, as shown in Figure 38.1. 

Here, the diffusion process is assumed to obey Fick’s law, but an 
effective diffusivity is used in place of the true diffusion coefficient. 

With that, a steady state mole balance on reactant A within a spherical 

catalyst particle takes the form given in equation (38.1) where rA is the 

rate of generation of A per unit catalyst volume, DeA is the effective 

diffusivity of A and CA is the concentration of A which varies as a 

function of radial position, r, measured from the center of the particle. 

It should be noted, in particular, that the appropriate diffusion 

coefficient to use when modeling a porous solid depends upon the 
chemical species present, the nominal diameter of the catalyst pores 

and the mode of diffusion. Possible modes of diffusion include 
ordinary molecular diffusion, Knudsen diffusion, configurational 

diffusion and surface diffusion.

−DeA
∂2CA

∂r2
+ 2
r
∂CA

∂r
⎛
⎝⎜

⎞
⎠⎟
= rA  (38.1)
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Figure 38.1. In the pseudo-
continuum pore model, the 

species are assumed to diffuse 
in the radial direction. The 

arrows indicate diffusion paths 
for reactants.



In reality, of course, if you looked at any spherical shell within the catalyst particle, only a fraction of 
the surface of that shell would be available for diffusion because the reactant could not really diffuse 

through the solid, only the pores. It is commonly assumed that the fraction of the surface of any spherical 

shell that is available for diffusion is equal to the void fraction, ε, of the catalyst particle (not the void 

fraction of the packed bed of particles). Similarly, the actual path followed by a diffusing reactant in reality 

will twist and turn so that the distance the reactant travels to reach the center of the particle is greater 

than the radius of the particle. A quantity known as the tortuosity, τ, is used to account for the difference 

between the straight line distance and the actual path length. With these two correction factors, the 

effective diffusivity can be related to the appropriate true diffusion coefficient for species A according to 
equation (38.2).

DeA =
εDA

τ
 (38.2)

Figure 38.2. When fluid flows around a solid particle there can be appreciable concentration gradients (a) 
between the bulk fluid and the external surface of the solid, (b) within the pores of the solid or (c) both.
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As noted in the introduction, and in Unit 12, concentration gradients can exist between the bulk 
flowing fluid and the external surface of the solid catalyst particles. When fluid flows around a solid, there 

is a thin layer of stagnant fluid near the surface of the solid known as the boundary layer. Within this 
boundary layer there isn’t any forced convection, only diffusion. This is represented schematically in 

Figure 38.2. In Figure 38.2 (a), the boundary layer is represented by pink, and the concentration of a 
reactant would decrease steadily from its bulk value as a function of distance into the boundary layer, as 

indicated by the arrow. Thus, at the external surface of the catalyst, a lower, external surface 
concentration would prevail.

The flux of a reactant, A, through the boundary layer is usually described in terms of a mass 

transfer coefficient, kc, where the subscript “c” denotes that the mass transfer coefficient is for use with 

concentrations as expressed in equation (38.3). The mass transfer coefficient will depend upon the 

geometry of the system under consideration, the fluid flow rate and fluid properties. As a consequence, 
values for mass transfer coefficients are often found from dimensionless correlations. Equation (38.4) is 

an example of such a correlation for the dimensionless quantity, jD, in terms of the Reynolds number1. 

Equations (38.5) and (38.6) show how jD and the Reynolds number are defined in terms of the tube 

diameter, Dtube; volumetric flow rate,  !V ; fluid viscosity, µ; fluid density, ρ; diffusion coefficient, DA; bed 

porosity, ε; and catalyst particle diameter, dpart. Equations (38.4) through (38.6) apply specifically to flow 

through a packed bed of spherical particles with Reynolds numbers greater than 50. A number of 
correlations of this type are available; a good mass transfer textbook or chemical engineering handbook 

should be consulted to find an appropriate correlation. Both jD and NRe may be defined differently, 

depending on the specific correlation being used.

NA = kc CA,bulk −CA,surf( )  (38.3)

jD = 0.61NRe
−0.41  (38.4)

 
jD = πDtube

2 kc
4 !V

µ
ρDA

⎛
⎝⎜

⎞
⎠⎟

2
3

 (38.5)

 
NRe =

2 !Vρ
3πDtube

2 µ 1− ε( )dpart
 (38.6)

In general, the concentration of the reactant at the external surface of the catalyst particle is not 
known. Suppose, however, that the catalyst was not porous as in Figure 38.2 (a), and that the system had 

reached steady state. At steady state, the flux given by equation (38.3) must just equal the rate of 
reaction on the surface of the catalyst particle. If this weren’t true, reactant would accumulate at the 

surface, and accumulation does not occur at steady state. Note that the rate expression should be 

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Unit 38 4

1 “Mass Transfer, Fundamentals and Applications,” by A. L. Hines and R. N. Maddox, Prentice-Hall, 
Engelwood Cliffs, NJ, 1985.



evaluated at CA,surf, not CA,bulk. Then, for a steady state system, the flux according to equation (38.3) can 

be set equal to the rate predicted by the rate expression at CA,surf (assuming the rate expression has been 

normalized per unit external catalyst surface area). The resulting expression can be solved to find the 
concentration of A at the surface. For example, if the reaction rate is first order in A, this leads to equation 

(38.7) for the surface concentration of A. Substitution of equation (38.7) back into the first order rate 
expression leads to a rate expression in terms of the bulk fluid concentration of A, equation (38.8). The 

rate expression in terms of the bulk fluid concentration still has the appearance of a first order rate 

expression, equation (38.9), but the apparent rate coefficient, k′, is no longer a simple rate coefficient, 

equation (38.10). Thus, if only external concentration gradients were present and the catalyst was non-

porous, the rate expression in equation (38.8) could be used in an ideal reactor model, and the model 
would correctly account for the external concentration gradient.

CA,surf =
kc

k + kc
CA,bulk  (38.7)

−rA =
kkc
k + kc

CA,bulk =
1
k
+ 1
kc

⎛
⎝⎜

⎞
⎠⎟

−1

CA,bulk  (38.8)

−rA = ′k CA,bulk  (38.9)

1
′k
= 1
k
+ 1
kc

 (38.10)

The preceding analysis only applies if the reaction is first order and the catalyst is non-porous. More 

commonly, the catalyst is a porous solid as depicted in Figure 38.2 (b) and (c). Assuming the total number 
of moles is not changed by reaction, a mole balance can be written for reactant A on a differentially thin 

spherical shell within the spherical catalyst particle. Assuming that the rate is again first order, but it is 

normalized per unit mass of catalyst, and letting ρs represent the apparent density of a catalyst particle, 

equation (38.11) results by taking the limit as the shell thickness goes to zero. Equation (38.11) is a 

second order differential equation that can be integrated analytically to obtain an expression for the 
concentration of A as a function of radial position within the catalyst particle. Doing so leads to two 

constants of integration. The values of these constants of integration are found by applying the boundary 

conditions specified in equations (38.12) and (38.13), where Rpart is the radius of the spherical catalyst 

particle. The first boundary condition simply requires that the concentration of A at the entrance to the 

porous solid is equal to the external surface concentration of A. The second boundary condition requires 
that the concentration gradient go to zero at the center of the particle. This has to be true because 

otherwise as one continued through the center of the particle the gradient would be pointing toward the 
surface instead of toward the center of the particle.

DeA
1
r2

d
dr

r2 dCA

dr
⎛
⎝⎜

⎞
⎠⎟ = ρskCA  (38.11)
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CA r=Rpart
= CA,surf  (38.12)

dCA

dr r=0

= 0  (38.13)

Integrating equation (38.11), finding the constants of integration and substituting them back into the 

result leads to equation (38.14) for the concentration of A as a function of radial position within the 
catalyst particle. Equation (38.14) only applies for a spherical catalyst particle with a first order reaction 

taking place. E. W. Thiele was among the first to derive models of this kind, and consequently the name 

Thiele modulus is given to the dimensionless quantity ϕ which represents the ratio of reaction rate to 

diffusion rate. It should be noted that in general, the definition of the Thiele modulus depends upon the 

geometry of the catalyst particle and the form of the rate expression.

CA r( ) = CA,surf

sinh φ r
Rpart

⎛

⎝⎜
⎞

⎠⎟

r
Rpart

⎛

⎝⎜
⎞

⎠⎟
sinhφ

;  where φ = Rpart
kρs

DeA

 (38.14)

The flux of reactant A into the catalyst through its surface (i. e. in the -r direction) is related to the 

gradient in the concentration of A at the surface according to equation (38.15). Substitution of the 

derivative of equation (38.14) into equation (38.15) gives an expression for the flux of A into the catalyst 
particle, equation (38.16). Multiplication of this flux by the external surface area of the catalyst particle 

gives the rate at which reactant A enters the particle.

−NA = DeA
dCA

dr
⎛
⎝⎜

⎞
⎠⎟
r=Rpart

 (38.15)

−NA =
φDeACA,surf

Rpart

1
tanhφ

− 1
φ

⎛
⎝⎜

⎞
⎠⎟

 (38.16)

As before, at steady state, the rate at which A enters the catalyst particle must just equal the rate of 

reaction of A within the particle, because otherwise A would accumulate within the particle. It is interesting 
to compare the rate of reaction given above to the what the rate would equal if there were no 

concentration gradients. Letting η represent the ratio of the actual rate of reaction (where concentration 

gradients exist) to the rate that would be observed if there were no concentration gradients (and CA = 

CA,surf everywhere within the catalyst particle) leads to equation (38.17). This quantity is known as the 

effectiveness factor; its value is given by equation (38.17) only when the reaction is first order and the 
catalyst particles are spherical.
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η = 3
φ

1
tanhφ

− 1
φ

⎛
⎝⎜

⎞
⎠⎟

 (38.17)

The utility of the effectiveness factor can be understood by first considering a situation where the 
external concentration gradients are negligible, such as that depicted in Figure 38.2 (b). That is, consider 

the case where the concentration gradient across the boundary layer is negligible. In this case, CA,surf = 

CA,bulk and the actual rate of reaction, including the effect of the concentration gradients within the pores, 

is simply equal to the rate of reaction given by the rate expression for the bulk fluid concentration 

multiplied by the effectiveness factor. Put differently, in the absence of concentration gradients in the 
boundary layer, all that is needed in order to correct one of the ideal reactor models so that it accounts for 
the concentration gradients within the spherical catalyst particles is to multiply the rate expression by the 

effectiveness factor, as in equation (38.18), where the rate would be normalized per unit catalyst volume.

−rA =ηρskCA,bulk  (38.18)

Figure 38.3 plots the effectiveness factor for a first order reaction taking place in a spherical catalyst 
particle as a function of the Thiele modulus. The figure shows that as the Thiele modulus goes to zero, 

the effectiveness factor approaches one. The effectiveness factor remains close to one for values of the 
Thiele modulus up to ca. 1, so generally one would prefer to operate a reactor at a Thiele modulus around 

1 or less. At values of the Thiele modulus greater than 1, the effectiveness factor decreases rapidly, 

eventually approaching an asymptotic slope equal to 3/ϕ (for a first-order reaction in a spherical particle).

Figure 38.3. Effectiveness factor for a first order reaction in a spherical catalyst particle.
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A word of caution is in order. When the reaction is first order, as in the analysis presented above, 
the Thiele modulus does not depend upon the concentration of A at the catalyst surface. This is rarely the 

case; for other reaction orders, the corresponding Thiele modulus, and consequently the effectiveness 
factor, depends upon the concentration of A at the catalyst surface. This means that as the reaction 

proceeds, the effectiveness factor will change. In addition, for a spherical catalyst particle and most 
reaction orders other than one, it has not proven possible to obtain an analytical expression for the 

effectiveness factor like equation (38.17), which is for a first order reaction. Instead, the effectiveness 
factor must be calculated numerically. Thus, it is possible to construct a plot of the effectiveness factor as 

a function of the Thiele modulus, similar to Figure 38.3. The problem, however, is that when that 
effectiveness factor is substituted into the PFR design equation, as in equation (38.18), it is no longer a 

constant. A rigorous solution of equation (38.18) requires that the variation in the effectiveness factor be 
accounted for.

Returning to the first order case, if the concentration gradient across the boundary layer is 

significant, as in Figure 38.2 (c), equation (38.16) is still valid. The only problem is that CA,surf is no longer 

equal to CA,bulk. However, for a steady state process, the flux into the catalyst must just equal the flux 

through the boundary layer. This is expressed in equation (38.19). Equation (38.19) can be solved for 

CA,surf giving equation (38.20) and the result can be substituted back into equation (38.16) to get an 

expression for the flux of reactant A into the catalyst in terms of the bulk fluid concentration of A, equation 

(38.21). From that, an expression for the global effectiveness factor, ηG, can be derived, equation (38.22). 

The global effectiveness factor in equation (38.22) is the actual rate of reaction (i. e. in the presence of 

concentration gradients in both the boundary layer and the pores) divided by the rate of reaction in the 

absence of concentration gradients (i. e. if CA = CA,bulk everywhere). Equation (38.22) only applies for a 

first order reaction taking place isothermally in a spherical catalyst particle.

φDeACA,surf

Rpart

1
tanhφ

− 1
φ

⎛
⎝⎜

⎞
⎠⎟
= kc CA,bulk −CA,surf( )  (38.19)

CA,surf =
γCA,bulk tanhφ

φ + γ −1( ) tanhφ
;    γ =

kcRpart

DeA

 (38.20)

−NA =
γCA,bulkDeA

Rpart

φ − tanhφ
φ + γ −1( ) tanhφ  (38.21)

ηG = 3
φ

1
tanhφ

− 1
φ

⎛
⎝⎜

⎞
⎠⎟

γ tanhφ
φ + γ −1( ) tanhφ  (38.22)

In situations where the effectiveness factor is not a constant, concentration gradients can be 

accounted for if one separately writes mole balances on A for the fluid phase and for the catalyst phase, 
as described in Unit 37. Since no reaction occurs in the fluid phase, due to the absence of catalyst, the 

fluid phase mole balance will not contain a term including the reaction rate. It will, however include a term 
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representing the net flux of A from the fluid phase to the catalyst phase. If the gradients in the boundary 
layer are significant, equation (38.3) can be used to describe that flux. The catalyst phase mole balance 

on A is then given by equation (38.11), together with the boundary conditions expressed in equations 
(38.12) and (38.13). The mole balance for the fluid phase and the catalyst phase mole balance are 

coupled by the unknown surface concentration of A, CA,surf. Consequently, the two mole balances must be 

solved simultaneously. In essence, in this approach is equivalent to calculating the effectiveness factor on 
the fly. The advantage in doing this is that the variation of the effectiveness factor with the surface 

concentration is automatically accounted for.
To review, this unit has presented an analysis for a first order heterogeneous catalytic reaction 

taking place isothermally (a) on the external surface of non-porous heterogeneous catalysts (Figure 
38.2a) (b) in porous spherical catalyst particles under conditions where concentration gradients exist only 

within the catalyst pores, but not across the external boundary layer (Figure 38.2b) and (c) in porous 
spherical catalyst particles under conditions where concentration gradients exist both across the external 

boundary layer and within the pores (Figure 38.2c). The unit has illustrated how the ideal reactor models 
can be corrected to account for concentration gradients by adding the effectiveness factor, and, 

alternatively, it has described how to account for concentration gradients by writing separate mole 
balances on the fluid phase and on the catalyst phase.

Once again, the approach presented in this unit is but one of many means of accounting for 
concentration gradients during heterogeneous catalysis. A similar approach can be applied to additionally 

account for temperature gradients. The approach used here uses the pseudo-continuum model for the 
porous solid; models can also be developed using other pore models. This approach can be adapted to 

catalyst geometries other than spherical and to situations where the total number of moles changes upon 
reaction. These topics are typically treated in much greater detail in advanced courses on kinetics and 

reaction engineering.
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