
A First Course on Kinetics and Reaction Engineering

Example 38.2

Problem Purpose
This example illustrates some limitations to the use of the effectiveness factor and shows how to

model an isothermal packed bed reactor by writing mole balances separately on each of the phases
present in the reactor.

Problem Statement
The gas phase, heterogeneous catalytic reaction A → B takes place isothermally in a packed bed

PFR with negligible pressure drop. The reaction rate per unit catalyst particle volume is second order in A,
and at the operating temperature, the rate coefficient is equal to 1.72 x 10-2 L mol-1 s-1. The void fraction

within the packed bed is equal to 0.4. The feed to the reactor is 1 cm3 s-1 of pure A, corresponding to a
concentration of 1.16 mol L-1. There are no temperature gradients anywhere in the reactor or in the

catalyst particles, and there are no concentration gradients external to the spherical catalyst particles
(diameter = 3 mm). The effective diffusion coefficient of A within the porous catalyst particles is equal to

2.7 x 10-7 cm2 s-1. The reactor diameter is 2.5 cm, and the conversion of A is 85%. First calculate the
length of the reactor using the average of the effectiveness factors at the reactor inlet and outlet. Then

calculate the reactor length using separate mole balances on the flowing gas phase and on the catalyst
phase, and compare the results.

Problem Analysis
This is a reaction engineering problem involving a packed bed reactor with concentration gradients

within the catalyst particles. We are told how to perform the calculations, mitigating most of the need to
analyze the problem. It should be noted that an analytic expression for the effectiveness factor for a

second order reaction in an isothermal, spherical catalyst particle is not available. Therefore, the
effectiveness factor will have to be calculated numerically.

Problem Solution
The following quantities are specified in the problem statement: k = 1.72 x 10-2 L mol-1 s-1, ε = 0.4,

 !V = 1.0 cm3 s-1 (since the total moles do not change upon reaction and the reactor is isothermal, the

volumetric flow rate will be constant), CA,in = 1.16 mol L-1, Dp = 3 mm, DeA = 2.7 x 10-7 cm2 s-1, DPFR = 2.5

cm and fA = 0.85. We are asked to determine the reactor length, L.

We are told to first calculate the length using the average of the inlet and outlet effectiveness

factors. If we are going to use an effectiveness factor, then the ideal PFR design equations can be used,
except that the rate must be multiplied by the effectiveness factor to account for the concentration

gradients within the catalyst particles. A PFR mole balance on A is given in equation (1) where the second
order rate expression has been substituted for the rate, which is multiplied by the effectiveness factor to

AFCoKaRE, Example 38.2 1

account for the presence of concentration gradients. As was the case in Example 38.1, the (1 − ε) term in

equation (1) is needed to convert the rate per volume of catalyst (which is what the given rate coefficient

yields) to the rate per volume of reactor (which is used in the ideal PFR design equation). Specifically ε is

the void volume per reactor volume, so (1 − ε) is the catalyst volume per reactor volume, and multiplying it

by the rate per catalyst volume gives the rate per reactor volume. The inlet molar flow rate of A can be

calculated from the given inlet volumetric flow rate and concentration, giving us the initial condition,
equation (2), needed to solve equation (1). The final value of the molar flow rate of A is known from the

specified conversion, as given in equation (3).

d !nA
dz

= −πDPFR
2

4
1− ε()η kCA

2() (1)

 !nA z = 0() = !VCA,in (2)

 !nA z = L() = !VCA,in 1− fA() (3)

Equation (1) can be solved numerically; to do so, in addition to the initial and final conditions above,

code must be provided that evaluates the right-hand side of equation (1) given values for z and ṅA.

Looking at the right-hand side of equation (1), the values of DPFR, ε and k are known. The concentration of

A can be calculated using equation (4), where !V is also known. That leaves η as the only quantity that is

needed in order to evaluate the right-hand side of equation (1). We are instructed to use the average of

the effectiveness factors at the inlet and the outlet of the reactor in equation (1).

CA =

!nA
!V

 (4)

As noted in the problem analysis, it will be necessary to calculate the effectiveness factors

numerically. As noted in the informational reading for this unit, a mole balance on A within the spherical,
porous catalyst particle is given by equation (5) (the only differences from equation (38.11) in the

informational reading are that the rate is second order and that here we are given the rate coefficient per
catalyst volume, so the apparent catalyst density is not necessary - see Example 38.1). The boundary

conditions, equations (6) and (7) are the same as those presented in the reading, but since there are no
external concentration gradients, the surface concentration of A is equal to the bulk concentration. It is

important to note that other than the bulk fluid concentration of A in boundary condition (6), the
concentrations in these equations are all concentrations within the catalyst particle.

DeA
1
r2

d
dr

r2 dCA

dr
⎛
⎝⎜

⎞
⎠⎟ = kCA

2 (5)

CA r=Rpart
= CA,bulk (6)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 2

dCA

dr r=0

= 0 (7)

We know the values of the effective diffusion coefficient, rate coefficient and bulk fluid concentration
at the inlet (1.16 mol L-1) and outlet (15% of 1.16 mol L-1, since the conversion is 85%). Therefore,

equation (5) can be solved numerically for each of the two bulk fluid concentrations. Doing so will yield

values for the concentration gradient at the surface of the catalyst particle. The flux in the radial direction

(that is, leaving the particle) at the surface of the particle, NA, can then be computed using equation (8).

Examination of equation (8), knowing that the diffusion coefficient is positive and the concentration
decreases as one moves toward the center of the particle (i. e. the derivative in equation (8) is positive),

shows that NA is negative, indicating that the flux is directed into the particle. Thus, the rate at which A

enters the is simply −NA times the surface area of the particle. The rate at which A is consumed within the

particle is −rA times the volume of the particle. At steady state, the rate at which A enters the particle must

equal the rate at which A is consumed within the particle, equation (9). The effectiveness factor, by

definition, is the actual rate at which A is consumed within the particle divided by the rate at which A would

be consumed within the particle if there were no concentration gradients (i. e. if CA = CA,bulk everywhere in

the particle), equation (10).

NA = DeA − dCA

dr
⎛
⎝⎜

⎞
⎠⎟
r=Rpart

 (8)

4π
3
Rp

3 −rA() = 4πRp
2 −NA() ⇒ rA =

3
Rp

NA() (9)

η = −rA
−rA, no gradient

=
− 3
Rp

NA()
kCA,bulk

2 (10)

Once the effectiveness factor has been calculated in this way at the inlet and outlet bulk

concentrations and averaged, equation (1) can be solved numerically. Doing so, one finds that η = 0.059

at the inlet and η = 0.15 at the outlet giving an average value of η = 0.102. With that average value of the

effectiveness factor, the solution of equation (1) shows that the required reactor length is L = 945 cm.

The problem specifies that we should also calculate the required reactor length by solving mole

balances on A in the fluid phase and in the catalyst phase. No reaction takes place in the fluid phase due
to the absence of catalyst, so there is no rate term. However, at any position in the reactor, some fluid

phase A leaves the fluid phase and enters the catalyst phase. We have seen above that the flux of A into

the catalyst, −NA, is easily obtained from a mole balance on A in the catalyst phase. The rate at which A

leaves the fluid phase, per unit volume of the reactor is then equal to that flux times the catalyst surface

area per reactor volume, AV. Thus, a mole balance on A in the fluid phase takes the form of equation (11).

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 3

The catalyst area per reactor volume is simply the catalyst area per catalyst volume times the catalyst

volume per total reactor volume, (1 − ε, as explained above), equation (12).

d !nA
dVPFR

= d !nA
πDPFR

2

4
⎛
⎝⎜

⎞
⎠⎟ dz

= −AV −NA() ⇒ d !nA
dz

= πDPFR
2 AV
4

NA() (11)

AV =
Aparticle

Vparticle

⎛

⎝⎜
⎞

⎠⎟
Vparticle

VPFR

⎛
⎝⎜

⎞
⎠⎟
=

4πRp
2

4πRp
3

3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
1− ε() = 3

Rp

1− ε() (12)

Equation (11) can be solved numerically. To do so, one must provide an initial condition, a final

condition and code that evaluates the right hand side of equation (11), given values for z and ṅA. The

initial condition and final condition are the same as before, equations (2) and (3). The reactor diameter is

known and AV can be calculated using equation (12), but the code to evaluate the right hand side of

equation (11) will need to calculate NA. In order to do so, that code will, in turn, need to solve equation (5),

the mole balance on A in the catalyst phase. The numerical solution of equation (5) has already been
described; the only difference here is that it is being solved within the code we write to evaluate the right

hand side of equation (11).
Upon writing the code, as just described, and solving equation (11) numerically, one finds that the

required length of the reactor is L = 936 cm. Thus, using the average of the inlet and outlet effectiveness

factors in the ideal PFR design equation did not introduce much error (945 vs. 936 cm). In addition, it
over-predicted the required reactor length, so if those calculations had been used, the reactor would have

exceeded the specified conversion by a small amount, causing no problems.
The effectiveness factor will also be affected by temperature gradients, or even by a temperature

change along the length of the reactor (e. g. due to adiabatic operation) in the absence of gradients
between the fluid and the catalyst or within the catalyst. In such cases, using an average effectiveness

factor in the PFR design equations could lead to a larger error, and simultaneously solving the fluid phase
and catalyst phase design equations may be preferred.

Calculation Details Using MATLAB
There are several ways one could structure the code for solving this problem. If you examine the

solution given above, you see that in both cases, the primary equation to be solved is an initial value
ODE, either the ideal PFR mole balance incorporating an effectiveness factor or a mole balance on the

fluid phase. In both cases, it is necessary to solve the catalyst phase mole balance and use the result to
calculate either the flux of reactant at the catalyst surface or the efficiency factor. To reduce the replication

of code, I opted to use four MATLAB functions. The first, Example_38_2, is where the known quantities
given in the problem statement are entered, after which the second, Example_38_2a, is called to

calculate the reactor length by solving the ideal PFR mole balance incorporating an effectiveness factor,

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 4

and the third, Example_38_2b, is called to calculate the reactor length by solving a mole balance on the
fluid phase. Each of the latter two function call the fourth function, Example_38_2_cat_bal, which

calculates the reactant flux in the radial direction at the surface of the catalyst particles and the
effectiveness factor by solving a mole balance on the catalyst phase.

One issue that arises when you use several functions like this, is that each of the functions typically
requires the values of several of the constant quantities given in the problem statement. One approach is

to enter all these quantities in one of the functions, and then copy and paste the exact same code into
each of the others. This is not a good programming practice. If one quantity changes or is typed

incorrectly, it has to be corrected in four different place. For this reason, I created a structure array named

given in the main function file. This structure array contains each of the given quantities. For example,

the given rate coefficient, k, is stored as given.k. The structure array can then be passed to each of the

other functions as an argument, giving those functions access to all the given quantities. Then, if a value

needs to be changed, only one change is required, and it is ensured that all of the functions are using the
same set of values for the given quantities.

With that background, the main MATLAB function for solving this problem is trivially simple, as
shown in Listing 1. It stores all of the given quantities (in consistent units) in the structure array and then

sequentially calls the two functions that calculate the reactor length. The structure array is passed to each
function as an argument. The file, Example_38_2.m accompanies this solution.

Listing 1. Full listing of the MATLAB function Example_38_2.

function Example_38_2
%Example_38_2 Code used in the solution of Example 38.2 of AFCoKaRE

 % Known quantities and constants entered in a structure array
 given = struct;
 given.k = 17.2; % cm^3/mol/s
 given.eps = 0.4;
 given.VFR = 1.; % cm^3/s
 given.CA0 = 1.16E-3; % mol/cm^3
 given.Rp = 0.3/2; % cm
 given.DA = 2.7E-7; % cm^2/s
 given.fA = 0.85;
 given.D = 2.5; % cm

 % Call Example_38_2a to solve using the average effectiveness factor
 L_avg_eta = Example_38_2a(given)

 % Call Example_38_2b to simultaneously solve the fluid phase and
 % catalyst phase mole balances
 L_phase_balances = Example_38_2b(given)

end % of Example_38_2

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 5

Next let’s consider the function Example_38_2_cat_bal which calculates the reactant flux in the
radial direction at the surface of the catalyst particles and the effectiveness factor by solving the mole

balance on the catalyst phase. The catalyst phase mole balance, equation (5) is a second-order ordinary
differential equation. Examination of the boundary conditions given in equations (6) and (7) shows that

one boundary condition applies at r = 0 and the other applies at r = Rp, making this a boundary-value

ODE problem. Supplemental Unit S6 describes how to solve boundary-value ODEs using MATLAB, and it
provides two template files that can be modified to do so. The use of either template file requires that

higher-order ODEs first be re-written as sets of first order ODEs. To do so, the chain rule for differentiation
is first applied to equation (5), resulting, after re-arrangement, in equation (13). Two new dependent

variables, y1 and y2, are then defined as in equations (14) and (15). Taking the derivative of equation (14)

and substituting equation (15) into the result gives the first of the two required first order ODEs, equation
(16). Substitution of equations (14) and (15) into equation (13) gives the second of the two required first

order ODEs, equation (17).

d 2CA

dr2
= − 2

r
dCA

dr
+ kCA

2

DeA

 (13)

y1 = CA (14)

y2 =
dCA

dr
 (15)

dy1
dr

= y2 (16)

dy2
dr

= −2 y2
r
+ ky1

2

DeA

 (17)

The boundary equations must also be re-written in terms of the new dependent variables.
Substituting equations (14) and (15) into equations (6) and (7) gives the required boundary conditions in

equations (18) and (19).

y1 Rp() = CA,bulk (18)

y2 0() = 0 (19)

Examining equation (17) shows that there is a singularity at r = 0, so the template file SolvBVDifS.m

from Supplemental Unit S6 can be modified and used to solve the catalyst phase mole balance
numerically. A copy of SolvBVDifS.m was saved as Example_38_2_cat_bal.m for this purpose. Recall that

we want Example_38_2_cat_bal to solve the catalyst phase mole balance and use the result to calculate
the reactant flux in the radial direction at the surface of the catalyst particles and the effectiveness factor.

To do this, the value of the concentration of A at the surface will be needed in addition to the quantities
given in the problem statement. Therefore function definition was changed so that the structure array

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 6

containing the quantities given in the problem statement and the reactant concentration at the catalyst
surface are passed to the function as arguments and so that it returns the desired flux and effectiveness

factor. At the same time, the long initial comment was deleted, and a new comment describing the
purpose of the function was added at the top of the function. The results of these modifications are shown

in Listing 2.

Listing 2. Modification of the function declaration in the template file SolvBVDiffS.m.

The next things in the template file are definitions of two internal functions named bvodes and bvs.

The first of these functions, bvodes, must be modified so that given values for the dependent (y1 and y2)

and independent (r) variables, it returns a vector containing the values of the right-hand sides of the

ODEs, excluding the terms associated with the singularity. In this case, everything needed in order to

do that is available in the structure array, given. The resulting modified code is shown in Listing 3.

Listing 3. Internal function bvodes.

The internal function, bvs, is passed the values of the dependent variables at the two ends of the

range of the independent variable. Hence, in the present case, y_at_start is a vector containing the

values of y1 and y2 at r = 0 and y_at_end is a vector containing the values of y1 and y2 at r = Rp. This

function must be modified so that it returns the corresponding error in each of the boundary conditions. In

the present case, if the boundary condition in equation (18) is satisfied, y1(Rp) − CA,bulk should equal zero.

If that term does not equal zero, its value is the error in the first boundary condition. Similarly, if the

boundary condition in equation (19) is satisfied, y2(0) should equal zero, and if it does not, its value is the

error in the second boundary condition. Thus, the internal function, bvs, is modified to return these values

as shown in Listing 4.

function [flux, eta] = Example_38_2_cat_bal(given,CAs)
%Example_38__cat_bal Solve the catalyst phase mole balance for Example 38.2
%of AFCoKaRE and return the rate

 % Structure array given contains known quantities and constants

 % Function that evaluates the column vector f in dydx = S*y/x + f(x,y)
 function dydx = bvodes(x,y)
 dydx = [
 y(2)
 given.k/given.DA*y(1)^2
];
 end % of internal function bvodes

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 7

Listing 4. Internal function bvs.

The template file must next be modified to discretize the range of the independent variable by

specifying its lower limit and its upper limit along with the number of elements to divide the range into.
Here I arbitrarily chose to divide the range into 20 parts. The modified code is shown in Listing 5.

Listing 5. Modifications for discretization in the radial direction.

The next necessary modification involves providing a guess for each of the dependent variables.

Even though the radial direction has been divided into 20 sections, we only need to provide a single
guess for each of the dependent variables. I noted that if the concentration of A goes to zero at the center

of the particle, then the average concentration of A would be one-half of the surface concentration and
that the derivative of the concentration with respect to r would equal the surface concentration divided by

the particle radius. I then used these values as the guesses, as shown in Listing 6.

Listing 6. Specification of guesses for the dependent variables.

Recall that the terms associated with the singularity were not included when the internal function,

bvodes, evaluated the right hand side of the boundary value ODEs being solved. The reason is that the

MATLAB solver used by the template file requires that the ODEs be written in the form shown in equation

(20) and that the internal function, bvodes, returns only the values of the functions, fi in those equations.

 % Function that calculates the errors at the boundaries
 function res = bvs(y_at_start,y_at_end)
 res = [
 y_at_start(2)
 y_at_end(1) - CAs
];

 end % of internal function bvs

 x_range_low = 0.;
 x_range_high = given.Rp;
 n_mesh_points = 20;

 % The next line creates an array for the independent variable
 x = linspace(x_range_low,x_range_high,n_mesh_points);

 % Guesses
 yinit = [
 CAs/2.
 CAs/given.Rp
];

 % The next line creates a structure containing the mesh and guesses
 solinit=bvpinit(x,yinit);

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 8

The last modification needed before the equations can be solved is to define the singularity matrix.
Comparing equations (16) and (17) to equation (20) shows that they are already in the proper form with

S11, S12, S21 and S22 defined as in equations (21) and (22). The corresponding modification of the template

file is shown in Listing 7.

dyi
dx

= Sij
yj
xall j

∑ + fi x, y() (20)

S1,1 = 0; S1,2 = 0 (21)

S2,1 = 0; S2,2 = −2 (22)

Listing 7. Specification of the singularity matrix.

At this point, the solver can be used to solve the boundary value ODEs. It returns a structure, as

described in Supplemental Unit S6 and the MATLAB documentation. The member of that structure named

y is a matrix where the first row contains the values of y1 at each of the mesh points, the second row

contains the values of y2 at each of the mesh points, and so on. We wish to calculate the flux of A in the

radial direction at the particle surface using equation (8). Since y2 is the derivative of CA with respect to r,

the last element in the second row of the matrix y is the value of that derivative at r = Rp. The flux can

thus be calculated by multiplication by the negative of the diffusion coefficient.

We also wish to calculate the effectiveness factor. This can be accomplished using equation (10).
Having calculated the flux and noting that the concentration of A in the bulk fluid is the same as its

concentration at the surface (no external gradients), we have everything needed to calculate the
effectiveness factor. The final modification of the template file to calculate the flux and effectiveness factor

is shown in Listing 8.

Listing 8. Calculation of the flux and effectiveness factor.

 S = [
 0,0
 0,-2
];

 % Solve the ODEs
 options = bvpset('SingularTerm',S);
 soln = bvp4c(@bvodes,@bvs,solinit,options);

 lastPoint = length(soln.x);
 flux = -soln.y(2,lastPoint)*given.DA; % solution, equation (8)
 eta = -3*flux/(given.Rp*given.k*CAs^2); % solution, equation (10)

end % of Example_38_2a

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 9

Now that we have a function that will calculate the flux of reactant at the particle surface and the
effectiveness factor, we can write the code to solve the initial value ODE that corresponds to the ideal

PFR mole balance modified to include an effectiveness factor. The ODE to be solved is given in equation
(1), with the initial condition specified in equation (2) and the final value given in equation (3). Equation (3)

shows that the final value of the dependent variable is known, so the ODE can be solved numerically by
modifying the MATLAB template file SolvIVDifD.m from Supplemental Unit S5.

As noted above, we will pass the structure array containing the values of the quantities given in the
problem statement to this function and we want it to return the length of the reactor. Therefore a copy of

the template file SolvIVDifD.m was saved as Example_38_2a.m and modified for this problem. The long
comment at the top of the template file was removed. The function declaration was changed to indicate

the structure array as an argument and the reactor length as the return value. A short comment was
added at the top of the file to give its purpose.

In addition to the quantities given in the problem statement, values for the effectiveness factor at
the reactor inlet and outlet will be needed in order to solve the ODE in equation (1). Specifically the

effectiveness factor at the reactor inlet and outlet will be averaged and used in equation (1). Since each of
these are constants, I entered code to calculate them next. Having written a separate function to calculate

the effectiveness factor, all that needs to be done is to calculate the surface concentration at the inlet and
outlet, call Example_38_2_cat_bal to calculate the corresponding effectiveness factors, and take their

average. All of the modifications mentioned so far are shown in Listing 9.

Listing 9. Function definition, initial comments and calculation of the average effectiveness factor.

The template file was next modified to provide the initial and final conditions. In this problem, the

initial value of z is z = 0 and the initial value of ṅA is calculated according to equation (2). The final

condition, equation (3), is specified by making two modifications. First, a large final value is specified for

the independent variable (tf in the MATLAB code) so that the known final value of the dependent

variable, ṅA(L), is reached first. Second, the internal function named stop is modified so that the variable

stop_when will equal zero when the final condition is reached. Subtracting the molar flow rate of A at the

reactor outlet from both sides of equation (3) yields equation (23). Clearly, the right-hand side of equation

function L = Example_38_2a(given)
%Example_38_2a Solve AFCoKaRE Example 38.2 using an average effectiveness

 % Structure array given contains known quantities and constants

 % Average the effectiveness factors at the inlet and outlet
 CAin = given.CA0;
 [flux, eta_in] = Example_38_2_cat_bal(given,CAin);
 CAout = (1-given.fA)*CAin;
 [flux, eta_out] = Example_38_2_cat_bal(given,CAout);
 eta_avg = (eta_in + eta_out)/2.;

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 10

(23) is equal to zero when the final condition is satisfied, so the variable, stop_when, is set equal to the

right-hand side of equation (23). These modifications are shown in Listing 10.

 0 =
!VCA,in 1− fA()− !nA z = L() (23)

Listing 10. Modifications required to specify the initial and final conditions.

The internal function, odeqns, must be modified so that it returns the right-hand side of equation

(1). All the quantities necessary for doing so are available, leading to the code shown in Listing 11. The
only other necessary modification (not shown here) is to set the final value of the independent variable

equal to the return value, L.

Listing 11. Modification of internal function odeqns for the solution of the ideal PFR mole balance
incorporating an effectiveness factor.

The function for solving the fluid phase and catalyst phase mole balances, Example_38_2b, is quite

similar to that for solving the ideal PFR model incorporating an effectiveness factor, Example_38_2a. The
only differences are, first, it is not necessary to calculate the average effectiveness factor at the beginning

 % Initial values
 t0 = 0.0;
 z0 = [
 CAin*given.VFR
]; % solution, equation 2

 tf = 960.;
 %tf = 96.6;
 options = odeset('Events',@stop);
 [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);

 % Function that provides the integration stopping criterion
 function [stop_when, isterminal, direction] = stop(t,z)
 isterminal = 1;
 direction = 0;

 stop_when = z(1) - (1-given.fA)*CAin*given.VFR;
 end % of internal function stop

 % Function that evaluates the ODEs
 function dzdt = odeqns(t,z)
 rate = given.k*z(1)^2/given.VFR^2;
 if (z(1) < 0)
 rate = 0.0;
 end % if (z(1) < 0)
 dzdt = [
 -pi()*given.D^2/4*eta_avg*(1-given.eps)*rate;
]; % solution, equation 1
 end % of internal function odeqns

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 11

of the function, and, second, the initial value ODE being solved is given by equation (11). The function
can be created by making a copy of Example_38_2a.m and saving it as Example_38_2b.m. The function

declaration must be changed accordingly, and the initial comment should be modified. The code for
calculating the average effectiveness factor can then be deleted and replaced with a single line of code

that calculates Av according to equation (12). The results are shown in Listing 12.

Listing 11. Function definition, initial comments and calculation of Av.

The only other change is in the internal function, odeqns, which must be modified so it returns the

right hand side of equation (11). Looking at that equation, it can be seen that all the necessary quantities
are available except for the flux. Since a separate function was written to calculate the flux, all that is

necessary is to call that function and then evaluate equation (11). This is shown in Listing 12.

Listing 12. Modification of internal function odeqns for the solution of the fluid and catalyst phase mole
balances.

At this point, if all four files are located in the MATLAB search path, the problem can be solved by

typing Example_38_2 at the MATLAB command prompt. Doing so produces the output shown in listing
13.

Listing 13. Output from the execution of Example_38_2

function L = Example_38_2b(given)
%Example_38_2b Solve AFCoKaRE Example 38.2 using phase balances

 % Structure array given contains known quantities and constants
 Av = 3./given.Rp*(1-given.eps); % solution, equation (12)

 % Function that evaluates the gas phase mole balance ODE
 function dzdt = odeqns(t,z)
 CAs = z(1)/given.VFR;
 % Calculate the flux of A by solving the catalyst phase mole
 % balance on A
 [NA, eta] = Example_38_2_cat_bal(given,CAs);
 % Evaluate the gas phase mole balance on A
 dzdt = [
 pi()*given.D^2/4*Av*NA % solution, equation 11
];
 end % of internal function odeqns

>> Example_38_2

L_avg_eta =
 944.5968

L_phase_balances =
 936.2184

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 38.2 12

