
A First Course on Kinetics and Reaction Engineering

Unit 36. Segregated Flow Models

Overview
Segregated flow models, the focus of Unit 36, are an alternative to the ideal reactor models that can 

be used in situations where the flow assumptions of the ideal models are not met. Segregated flow 
models effectively represent the reactor as a distribution of smaller reactors. The distribution is chosen so 

that the residence times of the smaller reactors match the residence time distribution of the real reactor 
being modeled.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• micro-mixing
• macro-mixing

Upon completion of this unit, you should be able to write the defining equation for the following quantities:
• average value of a reactor variable that depends upon the residence time

Upon completion of this unit, you should be able to perform the following specific tasks and be able to 
recognize when they are needed and apply them correctly in the course of a more complex analysis:

• Describe the assumptions that are made in the segregated flow model.
• Discuss the difference between early mixing and late mixing segregated flow models.

• Perform reaction engineering tasks involving an isothermal reactor using a segregated flow model. 

Information

Unit 11 described how the age function F(λ) can be used to characterize the flow in a reactor. You 

may recall that F(λ) is defined as the fraction of the fluid leaving a flow system at any instant that has 

been inside the system for a period of time less than λ. Unit 11 further showed how the age function could 

be measured experimentally by applying a tracer stimulus at the reactor inlet and then measuring the 

tracer response at the reactor outlet. It was noted in that unit that the age distribution function, dF(λ), 
represents the fraction of the fluid leaving the reactor that has been inside the reactor for the differentially 

small interval of time, dλ, between λ and λ + dλ. The age function, F(λ), and the age distribution function, 

dF(λ), are related according to equation (36.1).

 
dF λ( ) = dF

dλ
dλ  (36.1)

In cases where an isothermal reactor does not obey one of the ideal reactor models, it is possible to 

construct a model for the reactor that is based upon the measured age distribution function for that 
reactor. To do so, one assumes (or pretends) that as it enters the reactor, the fluid feed stream is divided 
up into very small, equally sized volumes of fluid called fluid elements. One further assumes that during 
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the entire time a fluid element is inside the reactor (a) it never mixes with any other fluid element and (b) 
there is perfect mixing within that fluid element. The perfect mixing within the fluid elements is sometimes 

referred to a micro-mixing, while mixing between fluid elements is referred to as macro-mixing. The 
segregated flow model is equivalent to assuming that the feed entering the reactor is split up (segregated) 

and placed into tiny little batch reactors where it remains until that batch reactor (fluid element) leaves the 
actual reactor. After leaving the actual reactor, the fluid elements macro-mix. Since the fluid elements do 

not macro-mix until after the fluid leaves the reactor, this model can be designated as a late-mixing 
segregated flow model.

The second assumption of segregated flow models is that each fluid element entering the reactor 
spends a unique amount of time inside the reactor before it leaves the reactor. Different fluid elements do 

not remain in the reactor for the same amount of time. Instead, it is assumed that the time spent in the 
reactor by the fluid elements is distributed among them according to the age distribution function. Thus, 

the fraction of the fluid elements that remain within the reactor for a period of time between λ and λ + dλ is 

equal to dF(λ).
The fluid within each fluid element begins to react as soon as that fluid element enters the reactor, 

and it stops reacting when the fluid element leaves the reactor. Because the fluid elements leaving the 

reactor have been inside for different amounts of time, the compositions of the fluid elements leaving the 
reactor are all different. However, because any one fluid element is perfectly mixed, the composition of 

that element can be calculated as long as one knows the feed fluid composition (the initial composition in 
the fluid element) and the amount of time that fluid element was inside the reactor. To do so, one simply 

solves the batch reactor design equations for that one fluid element. The exact size of a fluid element is 
not known, so it is necessary to assume a fluid element volume as a basis. The final composition of the 

fluid element then can be calculated using the feed composition, the batch reactor design equations and 
the residence time of that fluid element. Because an arbitrary basis is used when solving the design 

equations, the resulting final composition should be expressed as an intensive variable such as a 
concentration or in terms of an intensive reaction progress variable such as the fractional conversion.

To summarize up to this point, if the residence time of one particular fluid element is equal to t′, the 

batch reactor design equations can be used to calculate the concentrations, Ci(t′) of the species, i, in that 

fluid element or the conversion, fi(t′) of a reactant, i, in that fluid element at the time it leaves the reactor. 

Since it is assumed that the time spent inside the reactor by the fluid elements is distributed according to 

the residence time distribution, the fraction of the fluid leaving the reactor that came from fluid elements 

with a residence time of t′ is equal to dF(t′). If the total volumetric flow rate of fluid at the outlet of the 

reactor is equal to  !V , then  
!VdF ′t( )  is the outlet volumetric flow rate of fluid that had a residence time 

equal to t′, and  
!VCi ′t( )dF ′t( )  is the outlet molar flow rate of species i that had a residence time equal 

to t′. The total outlet molar flow rate of species i must then equal the sum of the outlet molar flow rates of 

species i with all possible residence times (that is, the sum from F = 0 to F = 1, or equivalently, the sum 

from t′ = 0 to t′ = ∞). Since the distribution of residence times is continuous, this sum takes the form of an 

integral as shown in equation (36.2), where the integration is over F, or equivalently in equation (36.3) 
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where the integration is over t′. The bar over the outlet molar flow rates in equations (36.2) and (36.3) 

indicates that they are averages over the distribution of fluid element residence times.

 
!ni = !VCi ′t( )dF ′t( )

F=0

F=1

∫ = !V Ci ′t( )dF ′t( )
F=0

F=1

∫  (36.2)

 
!ni = !V Ci ′t( ) dF λ( )

dλ′t =0

′t =∞

∫
λ= ′t

d ′t  (36.3)

The concentration of species i in the reactor outlet stream can be found by dividing equation (36.3) 

by the volumetric flow rate, equation (36.4). In fact, for any intensive property of the fluid that depends 

upon the fluid residence time, the average value can be found by integration over the residence time 
distribution. To do so, the property of interest, as a function of residence time, is multiplied by the 

residence time distribution and integrated over all possible residence times. For example, equation (36.5) 
can be used calculate the average residence time of all fluid leaving the reactor, and equation (36.6) can 

be used to calculate the outlet fractional conversion of species i according to the late-mixing segregated 

flow model.

 
Ci =

!ni
!V
= Ci ′t( ) dF λ( )

dλ′t =0

′t =∞

∫
λ= ′t

d ′t  (36.4)

t = ′t
dF λ( )
dλ′t =0

′t =∞

∫
λ= ′t

d ′t  (36.5)

fi = fi ′t( ) dF λ( )
dλ′t =0

′t =∞

∫
λ= ′t

d ′t  (36.6)

It is important to note that equations (36.2) through (36.6) all assume that the age function has 

been properly normalized. The integration of a properly normalized age distribution function over all 

possible values of F, equation (36.7), or equivalently, over all possible values of t′, equation (36.8), should 

equal 1.

dF ′t( )
F=0

F=1

∫ = 1  (36.7)

dF λ( )
dλ′t =0

′t =∞

∫
λ= ′t

d ′t = 1  (36.8)

The late-mixing segregated flow model is equivalent to a PFR where small amounts of fluid are 

withdrawn all along its length. Recall that a PFR is perfectly mixed in the radial direction, and that fluid 
residence time proportional to the axial distance into the reactor (the distance a differentially thick fluid 

element has moved into the reactor divided by the velocity at which that element is moving equals the 
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residence time). Thus, fluid removed at any distance along the reactor has been perfectly mixed for the 
whole time it was in the reactor, just as in the segregated flow model. If a fraction of the total inlet fluid 

equal to dF(t′) is removed at the axial position corresponding to a residence time of t′ for all possible 

residence times, and the removed fractions are then all recombined, the net effect is exactly the same as 
the segregated flow model. This is shown schematically in Figure 36.1.

Figure 36.1. Schematic representation of the late-mixing segregated flow model in terms of a PFR. 
Fractions of the fluid flow are removed all along the length of the PFR in such a way that the residence 
times of the fractions removed matches the residence time distribution for the reactor being modeled.

It is possible to develop an early-mixing segregated flow model that retains the assumptions of 
segregation and perfect micro mixing, but where macro-mixing takes place as soon as possible. Consider 

the situation depicted in Figure 36.2. In that schematic the feed is admitted all along the length of a PFR, 

and again the fraction of the feed fluid admitted at any position, dF(t′), is chosen so that its residence time 

will equal t′. At each point where fluid enters, it is perfectly mixed with the fluid that is already in the 

reactor at that axial position. Like the late-mixing segregated flow model, this model assumes perfect 

micro-mixing, but unlike the late-mixing segregated flow model, macro-mixing occurs as soon as possible 
in this early-mixing segregated flow model.

Figure 36.2. Schematic representation of an early-mixing segregated flow model that introduces macro-
mixing as soon as possible.

Finally, it was mentioned near the start of this unit that segregated flow models could be formulated 
for isothermal reactors that do not conform to the flow assumptions of ideal CSTRs or ideal PFRs. It 

would be much, much more complicated to extend the segregated flow models to a non-isothermal 
reactor. One would need to incorporate some way of deciding how much heat was transferred to each 

fluid element, whether heat was exchanged between fluid elements, if so, how much and at what rate, 
etc. etc. For these reasons, the segregated flow model is most useful for isothermal reactors, and non-

isothermal reactors will not be considered in this unit.
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