AFCoKaRE Practice Problem 35.1

Purpose: This problem will allow you to practice the quantitative analysis of a zoned reactor model.

Problem Statement: A tube that is 6 m long with an inside diameter of 7 cm is packed with pellets of solid catalyst. Reaction (1) takes place within this reactor at a constant temperature of $450^{\circ} \mathrm{C}$ and a constant pressure of 5 atm . The reactor will be fed $200 \mathrm{ft}^{3} \mathrm{~h}^{-1}$ of a gas containing $15 \% \mathrm{~A}, 15 \%$ B and $70 \% \mathrm{I}$ (an inert gas). Reaction (1) is one-half order in A and first order in B . Suppose that the packing in the tube is not uniform, and as a consequence 5% of the bed has a lower density (leading to a rate coefficient of $59.5 \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~atm}^{-0.5} \mathrm{~m}^{-3}$), while the remainder has a higher density (with a rate coefficient of $72 \mathrm{~mol} \mathrm{~h}^{-1} \mathrm{~atm}^{-0.5} \mathrm{~m}^{-3}$). Using a zoned reactor model with two equallysized, well-mixed stagnant zones located $1 / 3$ and $2 / 3$ of the way into the reactor representing the lower density region and modeling the remainder of the reactor as a PFR, calculate the conversion if 7.5% of the flow in the PFR is diverted to each of the well-mixed stagnant zones.

$$
\begin{equation*}
2 A+B \rightarrow 2 Z \tag{1}
\end{equation*}
$$

