
A First Course on Kinetics and Reaction Engineering

Unit 34. 2-D and 3-D Tubular Reactor Models

Overview
Unit 34 describes two- and three-dimensional models for tubular reactors. One limitation of the ideal  

PFR model is that the temperature and composition cannot vary in the radial direction. This can be a 
serious shortcoming in some situations, such as those involving heat transfer through the reactor walls, 

that is, in the radial direction. It can also happen that variations in the angular direction are important, 
such as radiant heating configurations where the radiation only “sees” one side of the tube. In cases like 

these, a more rigorous model that allows for two- or three dimensional variation may be required in order 
to develop a reactor model that is quantitatively accurate.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• radial dispersion coefficients
Upon completion of this unit, you should be able to perform the following specific tasks and be able to 

recognize when they are needed and apply them correctly in the course of a more complex analysis:
• Describe situations where it might be necessary to include radial and/or azimuthal variation of the 

temperature and composition when modeling a packed bed reactor.
• Describe the assumptions used in pseudo-homogeneous models for packed bed tubular reactors

• Write the appropriate steady state two-dimensional design equations for a psuedo-homogeneous 
packed bed tubular reactor along with the boundary conditions needed to solve them 

Information
The plug flow reactor model used in the first three parts of this TExT can describe a large number of 

reacting systems with a high degree of accuracy. Still, there are situations where the ideal PFR model is 
not accurate. One example is a packed bed tubular reactor where a large amount of heat must be 

removed through the reactor wall due to the high exothermicity of the reactions taking place. In such 
cases the temperature near the wall of the reactor may be significantly lower than the temperature at the 

center of the tube. This temperature variation means that the reaction rate is larger at the center of the 
tube than it is near the wall, and consequently, the composition may also vary with radial position.

In other cases there may be variations in the angular direction, too. As an example, consider an 
endothermic reaction where the reactor must operate at high temperatures. One common way of 

operating such reactors is to build a furnace with reactor tubes passing horizontally above the flames of 
the furnace. In this configuration, the tubes right above the flames receive a very high radiant heat input, 

but only on the bottom half of the tube, as indicated in Figure 34.1. This can result in temperature 
variations around the tube, that is, in the azimuthal direction. As before, this can lead to concentration 

gradients in the azimuthal direction.
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Figure 34.1. A radiant heat flux, represented as red arrows, from the bottom side of a tubular reactor can 
lead to temperature variations in the azimuthal direction. Here the shading of the tube wall represents the 

variation from higher temperatures (red) to lower temperatures (blue).

There are other scenarios where it is necessary to account for radial and/or azimuthal variation of 

the dependent variables in a tubular reactor. The molar flow rates of the chemicals present in the system 
are not appropriate as dependent variables in these cases. Specifically, the molar flow rate of a species is 

not a point quantity, it is an average or overall quantity that is representative of the flow in the tube as a 
whole. Consequently, 2-D and 3-D tubular reactor design equations are not written in terms of molar flow 

rates. Most commonly, the design equations are written in terms of linear velocities and concentrations, 
as was done in the axial dispersion model in Unit 33.

As was the case in Unit 33, here we will use the pseudo-homogeneous model for packed beds. 
That means that the equations are formulated as if there is no packing present and the entire tube cross 

section is filled with fluid. When this is done, additional factors, such as bed porosities, are added to 
account for the packed bed, leading to equations that look very similar to equations for a reactor 

containing a homogeneous fluid (hence the model is named “pseudo-homogeneous”). We will continue to 
use the assumption of plug flow. As a consequence the linear velocity of the fluid is assumed to be 

parallel to the tube axis; we do not include velocities in the r or θ directions., Furthermore, at any axial 

position, z, in the reactor, the velocity is the same for all r and θ (i. e. plug flow is assumed). This means 

that convection cannot be used to account for radial movement of heat or mass. Instead, these are 
incorporated as “effective” radial heat conduction and “effective” radial mass diffusion (or dispersion). It is 

also possible to include effective conduction and diffusion in the axial direction, as was done in Unit 33, 
but the models without axial conduction and diffusion are found to be quite accurate in most cases.

The radial conduction and diffusion are labeled as “effective” because it is assumed that they follow 
a straight radial path (as they would in a homogeneous fluid). In reality, the path may not be straight due 

to the presence of the solid, and for conduction, the heat will be conducted through both the fluid and the 
solid, not just a single homogeneous fluid. These effects are accounted for through the use of an 

“effective” radial thermal conductivity (or radial thermal dispersion coefficient) and an “effective” radial 

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Unit 34 2



diffusivity (or radial dispersion coefficient). As was the case for axial dispersion, these “effective” transport 
properties are not properties of the materials involved; they depend upon the flow properties in the 

reactor. As such, they are often found using correlations involving dimensionless groups like the 
Reynolds, Peclet and Nusselt numbers. A good reference source or text on heat and mass transfer 

should be consulted to find appropriate correlations for the effective transport properties. One point to 
bear in mind when using these correlations is that some of the correlations use the superficial velocity in 

the calculation of the Reynolds number, etc. but other correlations use the interstitial velocity (the actual 
velocity in the spaces between the solid catalyst particles). These two are related to each other through 

the bed porosity, ε, and when using these correlations one should take care to use the proper velocity.

Using the assumptions just described, the mole, energy and momentum balances for a steady 

state, psuedo-homogeneous, plug flow, packed bed reactor with radial temperature and concentration 

gradients are given in equations (34.1) through (34.3). The diffusion coefficient and thermal conductivity 

appearing in these equations are effective diffusivities and conductivities as just described; there is one 

effective radial diffusion coefficient for all species present. The subscript e denotes “effective,” r denotes 

“radial direction” and s denotes that us is a superficial velocity. The heat capacity, 
!Cp, fluid  , is the mass-

specific heat capacity for the fluid as a whole and ρfluid is similarly the density of the fluid as a whole. The f 
appearing in the momentum balance is a friction factor, and the momentum balance, as written, assumes 

it is defined in terms of the effective diameter of the catalyst particles, dp. It accounts for the pressure drop 

caused by flow through the reactor in the same way that the Ergun equation did in the ideal PFR design 

equations we used previously. It should be noted that in this form the design equations assume that the 

fluid viscosity does not vary with radial position. That could happen if the viscosity was a strong function 

of temperature, so here we are assuming that the viscosity is constant.
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In order to solve the design equations (34.1) through (34.3), boundary conditions are needed. Most 

typically, the inlet (i. e. at z = 0) concentration, Ci0, temperature, T0, and pressure, P0, are known, 

equations (34.4) through (34.6). The radial concentration boundary conditions assume that the 
concentration gradient goes to zero at the wall and at the centerline of the reactor tube, equations (34.7) 

and (34.8). Similarly, the temperature gradient is assumed to go to zero at the centerline, equation (34.9). 
Assuming that heat transfer with the surroundings will be taking place through the wall, the other radial 
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temperature boundary condition is given by equation (34.10), where αw is the heat transfer coefficient at 

the wall and Tw is the wall temperature. The value of the heat transfer coefficient at the wall is often found 

from correlations; again, see a good reference on heat transfer.

Ci r,0( ) = Ci, feed  (34.4)

T r,0( ) = Tfeed  (34.5)

P 0( ) = Pfeed  (34.6)

∂Ci

∂r r=0

= 0  (34.7)

∂Ci

∂r r=R

= 0  (34.8)

∂T
∂r r=0

= 0  (34.9)

∂T
∂r r=R

= αw

λer

T R, z( )−Tw( )  (34.10)

Notice that the derivative of the product, usCi, appears in the mole balance, equation (34.1). For a 

gas phase system, the superficial velocity will vary along the length of the reactor due to thermal 

expansion/contraction as well as any change in the total molar concentration due to the reaction. It is 
fairly common to neglect this variation in superficial velocity. This is equivalent to assuming constant 

density. With this assumption, us can be taken outside the derivative, and the solution of the design 

equations is relatively straightforward.
If one wishes to formally account for the variation in the superficial velocity along the length of the 

reactor, one mole balance must be replaced by an equation of state. For example, if ideal gas behavior is 

assumed, the superficial velocity can be related to the fluid density as in equation (34.11), where G 

represents the so-called mass velocity as defined in equation (34.12). In a steady state reactor, G will be 

a constant since mass is neither consumed nor generated by chemical reactions. It is then necessary to 

express the fluid density in terms of all of the concentrations except one (as noted, mole balances are 

written for all but one species). If the index j is used to denote the species for which a mole balance is not 

written, the density can be related to the concentrations through the species’ molecular weights as in 

equation (34.13). The concentration of species j can be found from the total concentration and the 

concentrations of the other species, equation (34.14), and the total concentration can be expressed using 
the equation of state (here, the ideal gas law), equation (34.15). Combining equations (34.11) and (34.13) 

through (34.15) gives an expression for the superficial velocity, equation (34.16). This expression can 
then be substituted into the mole balance, equation (34.1). The chain rule for derivatives can then be 
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used to generate a set of equations where the product, usCi, no longer appears in any derivatives. The 

mathematics needed to solve the resulting equations is significantly more complicated than the constant 

density case where us is simply taken outside of the derivative.

usρ fluid = G    ⇒    us =
G

ρ fluid

 (34.11)
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There are other formulations of two- and three-dimensional tubular packed bed reactor models 

besides the pseudo-homogeneous model given here. They vary in the way they handle the presence of 
two phases in the reactor, whether they account for the porous nature of the catalyst and other factors. 

The interested student is encouraged to consult more advanced textbooks on reaction engineering or 
take a more advanced course on the topic.
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