## AFCoKaRE Practice Problem 33.1

Purpose: This problem will allow you to practice the quantitative analysis of a tubular reactor with axial dispersion.

Problem Statement: Gas phase A, at 10 atm and $100^{\circ} \mathrm{C}$ is fed at a rate of 23,000 $\mathrm{L} \mathrm{min}^{-1}$ to a 2 in diameter, isothermal tubular reactor that is 8 ft long. The reactor temperature is $100^{\circ} \mathrm{C}$ and pressure drop in the reactor is negligible. Reversible reaction (1) takes place at a rate described by equation (2). At the operating temperature, $\mathrm{k}_{\mathrm{f}}=$ $4750 \mathrm{~min}^{-1}$ and $\mathrm{k}_{\mathrm{r}}=4300 \mathrm{~min}^{-1}$. Calculate the conversion of $A$ if the axial dispersion coefficient is equal to $5.5 \times 10^{5} \mathrm{dm}^{2} \mathrm{~min}^{-1}$.

$$
\begin{align*}
& \mathrm{A} \rightleftarrows \mathrm{Z}  \tag{1}\\
& r=k_{f} C_{A}-k_{r} C_{z} \tag{2}
\end{align*}
$$

