
A First Course on Kinetics and Reaction Engineering

Example 33.2

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit. Specifically, it illustrates the use of the axial dispersion model and shows how it will predict results 
intermediate between a CSTR and a PFR for an appropriate value of the dispersion coefficient.

Problem Statement
The reaction between A and B produces the desired product, D according to reaction (1), but B also 

decomposes according to reaction (2), generating the undesired product U. When the reactions take 
place in a constant density solution, the heat of reaction is so small that the reactions are effectively 

isothermal. Reaction (1) is first order in each of the two reactants, second order overall. Reaction (2) is 
second order in B. At the process temperature the rate coefficient for reaction (1) is 8 x 10-2 L mol-1 min-1 

and that for reaction (2) is 4 x 10-2 L mol-1 min-1. When a CSTR is used, the selectivity is 6.32 mol D per 
mol U at 90% conversion of B, and when a PFR is used at the same conversion, the selectivity is 3.03 

mol D per mol U. Compare these selectivities to the selectivity predicted by the axial dispersion model 
when the axial dispersion coefficient is equal to 4 dm2 s-1. The feed to the 35 dm long tubular reactor will 

be taken from a tank that contains a solution of A and B with equal concentrations of 0.75 M and flow with 
a superficial velocity of 0.1 dm s-1. (The flow rate and reactor length were chosen to give a conversion of 

ca. 90% to permit an equitable comparison to the PFR and CSTR selectivities.)

A + B → D (1)

2 B → U (2)

Problem Analysis
The problem statement instructs us to use the axial dispersion model to compute the selectivity. It 

also states that the reactions occur isothermally. To solve the problem, axial dispersion model mole 

balances will need to be written for at least two of the reagents that participate in the reactions. Those 
equations can be solved to find the concentrations of D and U at the reactor outlet, allowing the 

calculation of the selectivity.

Problem Solution

The following quantities are given in the problem statement: k1 = 8 x 10-2 L mol-1 min-1, k2 = 4 x 10-2 

L mol-1 min-1, Dax = 4 dm2 s-1, L = 35 dm, CA,feed = 0.75 mol L-1, CB,feed = 0.75 mol L-1, us = 0.1 dm s-1. The 

problem states that the density of the solution is constant, so the volumetric flow rate and the superficial 
velocity are also constant.

The general form of the axial dispersion model mole balance is given in equation (1). In the present 
problem, there are two reactions taking place, so the summation expands to two term. In addition, the 

superficial velocity is a constant and can be taken outside of the derivative. Mole balances of the form 
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given in equation (1) can be written for each of the reagents, A, B, D and U, leading to equations (2) 
through (5).

−Dax
d 2Ci

dz2
+ d
dz

usCi( ) = ν i, jrj
j=all

reactions

∑  (1)

−Dax
d 2CA

dz2
+ us

dCA

dz
= −r1  (2)

−Dax
d 2CB

dz2
+ us

dCB

dz
= −r1 − 2r2  (3)

−Dax
d 2CD

dz2
+ us

dCD

dz
= r1  (4)

−Dax
d 2CU

dz2
+ us

dCU

dz
= r2  (5)

We will use the Danckwerts boundary conditions to solve the mole balances. The general form of 

the Danckwerts boundary conditions are given in equations (6) and (7). Those equations can be used to 
write the boundary conditions for A, B, D and U, as given in equations (8) through (15), where the 

equations were also re-arranged so there is a zero on the right of the equals sign.

at z = 0;  usCi z = 0( )− Dax
dCi

dz z=0

= usCi, feed  (6)

at z = L;  dCi

dz z=L

= 0  (7)

usCA 0( )− Dax
dCA

dz z=0

− usCA, feed = 0  (8)

dCA

dz z=L

= 0  (9)

usCB 0( )− Dax
dCB

dz z=0

− usCB, feed = 0  (10)

dCB

dz z=L

= 0  (11)

usCD 0( )− Dax
dCD

dz z=0

− usCD, feed = 0  (12)
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dCD

dz z=L

= 0  (13)

usCU 0( )− Dax
dCU

dz z=0

− usCU , feed = 0  (14)

dCU

dz z=L

= 0  (15)

Some of the boundary conditions are specified at z = 0 while other are specified at z = L, making 

the set of ordinary differential equation (ODEs) to be solved mixed boundary value ODEs. We will solve 

these equations numerically (see Supplemental Unit S6). No matter what software is used, solving 
equations (2) through (5) numerically will require us to provide code that is given values for the dependent 

variable and its derivatives as a function of the independent variable and that uses those values to 
evaluate the ODEs and the boundary conditions.

In the present case, the four quantities appearing in the ODEs other than the derivatives, 
dependent variables and independent variable are the axial dispersion coefficient, the superficial velocity 

and the rates of the two reactions. The first two are constants that were given in the problem statement, 
as listed above. The problem specifies the reaction orders, and the rate coefficients are given (they are 

constant since the reaction occurs isothermally). Thus, the rates can be calculated using equations (16) 
and (17). All of the quantities appearing in the boundary conditions are known constants whose values 

are given in the problem statement.

r1 = k1CACB  (16)

r2 = k2CB
2  (17)

Thus, at this point the code needed to solve the the axial dispersion model mole balances 

numerically can be written and the equations can be solved. Doing so yields the concentrations of A, B, D 
and U as a function of axial position within the reactor. The resulting values of the concentrations of D and 

U at the reactor outlet can be used to compute the selectivity according to equation (18). Doing so, one 
finds the selectivity to equal 3.4 mol D per mol U. Recall that at the same conversion the selectivity in a 

PFR is 3.03 and when a CSTR is used it equals 6.32. As expected, the axial dispersion model yields a 
selectivity intermediate between a PFR and a CSTR because the amount of back-mixing in the axial 

dispersion model is intermediate between the zero back-mixing of the PFR and the complete back-mixing 
of the CSTR.

SD
U
=
CD L( )
CU L( )  (18)
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Calculation Details Using MATLAB
The axial dispersion mole balance design equation is a mixed boundary ODE. The solution of 

mixed boundary ODEs is described in Supplemental Unit S6, which also provides template files for 
solving them. There are two template files provided. One is used if the ODE contains the reciprocal of the 

independent variable which causes a singularity at the point where that variable equals zero. Examining 

equations (2) through (5), it can be seen that the reciprocal of z is not present. Therefore the code 

presented here was generated by modifying the MATLAB template file SolvBVDif.m, a copy of which was 

saved as Example_33_2_ad.m and modified to solve this problem. The modified file accompanies this 
solution.

In order to use the template file, the second-order ODEs of equations (2) through (5) must be 
reduced to a set of first order ODEs, and the boundary conditions must be re-written in terms of the new 

dependent variables. This is a straightforward process and is explained in Supplemental Unit S6. We 

begin by defining CA′ as in equation (19). With that definition, the second derivative of CA with respect to z 
will equal the first derivative of CA′ with respect to z, as shown in equation (20). Substitution of equations 

(19) and (20) into equation (2) leads to equation (21). Analogous treatment of the mole balances on B, D 

and U leads to equations (22) though (27).

dCA

dz
= ′CA  (19)

d 2CA

dz2
= d ′CA

dz
 (20)

−Dax
d ′CA

dz
+ us ′CA = −r1      ⇒      d ′CA

dz
= r1 + us ′CA

Dax

 (21)

dCB

dz
= ′CB  (22)

d ′CB

dz
= r1 + 2r2 + us ′CB

Dax

 (23)

dCD

dz
= ′CD  (24)

d ′CD

dz
= −r1 + us ′CD

Dax

 (25)

dCU

dz
= ′CU  (26)

d ′CU

dz
= −r2 + us ′CU

Dax

 (27)
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Thus, the four second order ODEs, equations (2) through (5), are equivalent to the eight first order 
ODEs, equations (19) and (21) through (27). Similarly substituting equation (19), and its equivalents for B, 

D and U, into the original boundary conditions, equations (8) through (15), leads to the corresponding 
boundary conditions in terms of the new dependent variables, equations (28) and (through).

usCA 0( )− Dax
dCA

dz z=0

− usCA, feed = 0  ⇒    usCA 0( )− Dax ′CA 0( )− usCA, feed = 0  (28)

dCA

dz z=L

= 0   ⇒    ′CA L( ) = 0  (29)

usCB 0( )− Dax ′CB 0( )− usCB, feed = 0  (30)

′CB L( ) = 0  (31)

usCD 0( )− Dax ′CD 0( )− usCD, feed = 0  (32)

′CD L( ) = 0  (33)

usCU 0( )− Dax ′CU 0( )− usCU , feed = 0  (34)

′CU L( ) = 0  (35)

With the equations in this form, the modification of SolvBVDif.m can be undertaken. To begin, the 
initial comment was replaced, the function definition was changed so there are no return values and the 

known constants from the problem statement were entered. These modifications can be seen in Listing 1.

Listing 1. Modified initial comment and function statement followed by entry of known constants.

% Modified version of the MATLAB template file SolvBVDif.m used to model
% the tubular reactor with axial dispersion in Example 33.2 of "A First 
% Course on Kinetics and Reaction Engineering."
%
function Example_33_2_ad
    % Known quantities and constants (in consistent units)
    k1 = 8e-2; % dm3/mol/min
    k2 = 4e-2; % dm3/mol/min
    CAfeed = 0.75; % mol/dm3
    CBfeed = 0.75; % mol/dm3
    CDfeed = 0.0; % mol/dm3
    CUfeed = 0.0; % mol/dm3
    us = 0.1 * 60; % dm/min
    L = 350.0; % dm
    Dax = 4. * 60; % dm2/min
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The second modification occurs within an internal function named bvodes; this is where the ODEs 

are evaluated. This internal function is passed values of the independent and dependent variables (as x 

and y, respectively). I like to extract the dependent variables from the vector y, giving them more 

meaningful names. In this case I extracted them into variables named CA, CA_prime, etc. After doing 

that, the rates of the two reactions can be calculated using equations (16) and (17). If the ODEs have 
been written with one derivative on the left of the equals sign and everything else on the right side of the 

equals sign, as in equations (19) and (21) through (27), the right hand sides of those ODEs can then be 

evaluated and returned in the column vector named dydx. All this is shown in Listing 2.

Listing 2. Modified version of the internal function bvodes.

The third modification occurs within an internal function named bvs; this is where the boundary 

conditions are evaluated. This internal function is passed the values of the dependent variables (CA, CA′, 
CB, CB′, CD, CD′, CU and CU′) at z = 0 in a vector named y_at_start and it is passed the values of the 

same dependent variables at z = L in a vector named y_at_end. I extracted the dependent variables 

from the two vectors, giving them more meaningful names. Notice that in equations (28) through (35) the 
boundary equations have been written with a zero on the right hand side of the equations. The 

modification of internal function bvs involves evaluating the left hand side of each of those equations and 

returning them in the form of a column vector named res. (The variable name “res” stands for “residual,” 

    % Function that evaluates the derivatives
    function dydx = bvodes(x,y)
        CA = y(1);
        CA_prime = y(2);
        CB = y(3);
        CB_prime = y(4);
        CD = y(5);
        CD_prime = y(6);
        CU = y(7);
        CU_prime = y(8);
        r1 = k1*CA*CB;
        r2 = k2*CB^2;
        dydx = [
            CA_prime
            (us*CA_prime + r1)/Dax;
            CB_prime
            (us*CB_prime + r1 + 2*r2)/Dax;
            CD_prime
            (us*CD_prime - r1)/Dax;
            CU_prime
            (us*CU_prime - r2)/Dax;
        ];
    end % of internal function bvodes
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because if the boundary condition is satisfied it will equal zero, otherwise it will be the residual, non-zero 
value.) The modifications to internal function bvs are shown in Listing 3.

Listing 3. Modified version of the internal function bvs.

The fourth modification involves creating an initial mesh of points within the reactor where the 

values of the dependent variables will be calculated. As can be seen in Listing 4. I chose to simply use 

100 points between z = 0 and z = L. The fifth modification involves providing a guess for the value of the 

dependent variables at those mesh points. You only provide a single guess for each dependent variable, 

and that same guess is used at all of the mesh points. As can be seen in Listing 4, I used the feed 
concentration of A as my guess for the each of the concentrations, and I used the rate of the first reaction 

at the feed concentration divided by the superficial velocity as my guess for the the Ci′ dependent 

variables. (Example 33.1 explains how I came up this this guess, but in the end it is simply a guess; you 
can use any guess that leads to a converged solution.)

    % Function that calculates the errors at the boundaries
    function res = bvs(y_at_start,y_at_end)
        CA_inlet = y_at_start(1);
        CA_prime_inlet = y_at_start(2);
        CB_inlet = y_at_start(3);
        CB_prime_inlet = y_at_start(4);
        CD_inlet = y_at_start(5);
        CD_prime_inlet = y_at_start(6);
        CU_inlet = y_at_start(7);
        CU_prime_inlet = y_at_start(8);
        CA_outlet = y_at_end(1);
        CA_prime_outlet = y_at_end(2);
        CB_outlet = y_at_end(3);
        CB_prime_outlet = y_at_end(4);
        CD_outlet = y_at_end(5);
        CD_prime_outlet = y_at_end(6);
        CU_outlet = y_at_end(7);
        CU_prime_outlet = y_at_end(8);
        res = [
            us*CA_inlet - Dax*CA_prime_inlet - us*CAfeed;
            CA_prime_outlet;
            us*CB_inlet - Dax*CB_prime_inlet - us*CBfeed;
            CB_prime_outlet;
            us*CD_inlet - Dax*CD_prime_inlet - us*CDfeed;
            CD_prime_outlet;
            us*CU_inlet - Dax*CU_prime_inlet - us*CUfeed;
            CU_prime_outlet;
        ];
    end % of internal function bvs

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.2 7



Listing 4. Modification to set up the initial mesh and provide guesses.

The final modification occurs after the equations have been solved. In this case it involves using the 

result to calculate the selectivity. I also calculated the conversion of B to make sure it was near 90% so 
that it could be equitably compared to the PFR and CSTR selectivities given in the problem statement. 

These modifications can be seen in Listing 5.

Listing 5. Modification to assign values to the return variables.

After saving the modified template file, it can be executed by typing “Example_33_2_ad” at the 

MATLAB command prompt. Doing so generates the output in Listing 6.

    % Set up the initial mesh
    x_range_low = 0.0;
    x_range_high = L;
    n_mesh_points = 100.;
    
    % The next line creates an array for the independent variable
    x = linspace(x_range_low,x_range_high,n_mesh_points);
 
    % Guesses
    yinit = [
        CAfeed
        k1*CAfeed*CBfeed/us
        CAfeed
        k1*CAfeed*CBfeed/us
        CAfeed
        k1*CAfeed*CBfeed/us
        CAfeed
        k1*CAfeed*CBfeed/us
    ];

    % Create a structure containing the mesh and guesses
    solinit=bvpinit(x,yinit);
 
    % Solve the odes
    result = bvp4c(@bvodes,@bvs,solinit);
    
    convB = 100*(CBfeed - result.y(3,end))/CBfeed
    sel = result.y(5,end)/result.y(7,end)
    
end % of file Example_33_2_ad.m
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Listing 6. Output from the execution of Example_33_2_ad.m

>> Example_33_2_ad

convB =
   89.8138

sel =
    3.4215
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