
A First Course on Kinetics and Reaction Engineering

Example 33.1

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this

unit. It illustrates the analysis of a tubular reactor using the axial dispersion model. It also supports the
claim made in the informational reading that axial dispersion has little effect beyond a distance of ca. 50

particle diameters into the reactor.

Problem Statement
Consider an isothermal tubular packed bed reactor with axial dispersion where the Danckwerts

boundary conditions apply. The irreversible reaction A → B takes place with a forward rate coefficient

equal to 1.2 × 10-2 s-1. The feed contains only A at a concentration of 1M. The axial Peclet number, based
on the packing diameter and the superficial velocity, is equal to 2 and the inlet superficial velocity is 0.01

m/s. The reactor contains a fixed bed of 0.004 m diameter catalyst particles. Compare a plot of the
conversion versus length to that for a plug flow reactor for reactor lengths from zero to fifty times the

particle diameter.

Problem Analysis
This problem is straightforward; we are told the reactor is tubular with axial dispersion and to use

the Danckwerts boundary conditions. We simply need to set up the mole balance equations for the axial

dispersion model and solve them. The results will then be plotted. We will also need to solve the PFR
design equations to make the requested comparison.

Problem Solution
The following quantities are given in the problem statement: k = 1.2 × 10-2 s-1, CA,feed = 1 mol L-1,

Peax = 2, us = 0.01 m s-1, dp = 0.004 m. The reactor is isothermal, we will ignore pressure drop, and the

reaction does not change the total number of moles. As a consequent, the total molar flow rate, the

volumetric flow rate and the superficial velocity are all constant.
Axial Dispersion Model The general form of the axial dispersion model mole balance is given in

equation (1). In the present problem, there is only one reaction taking place, so the summation reduces to
a single term. In addition, the superficial velocity is a constant and can be taken outside of the derivative.

We normally begin by writing a mole balance for each species present in the system. Here, after writing
the mole balance for A, equation (2), we can see that after substitution of the rate expression, the

resulting differential equation contains only one dependent variable, namely the concentration of A. As a
consequence, equation (2) can be solved independently of any other equations. In addition, solving

equation (2) will allow us to calculate the conversion along the length of the reactor and make the
requested plot. Therefore, we will not write the mole balance on B, since we do not need it in order to

answer the question.

AFCoKaRE, Example 33.1 1

−Dax
d 2Ci

dz2
+ d
dz

usCi() = ν i, jrj
j=all

reactions

∑ (1)

−Dax
d 2CA

dz2
+ us

dCA

dz
= −r = −kCA (2)

Since we are using the Danckwerts boundary conditions, equation (2) is a boundary value ordinary

differential equation (ODE). We will solve this equation numerically. No matter what software is used,
solving equation (2) numerically will require us to provide code that is given values for the dependent

variable and its derivatives as a function of the independent variable and that uses those values to
evaluate the ODEs and the boundary conditions. In the present case, the three terms needed in order to

evaluate the ODE, other than the dependent variable and its derivative, are the axial dispersion
coefficient, the superficial velocity and the rate coefficient. The latter two are given in the problem

statement. The axial dispersion coefficient can be calculated from the quantities given in the problem
statement and listed above by rearranging the definition of the axial Peclet number, equation (3).

Peax =
usdp
Dax

 ⇒ Dax =
usdp
Peax

 (3)

The general forms of the Danckwerts boundary conditions are given in equations (4) and (5).
Writing them for reactant A leads to equations (6) and (7).

at z = 0; usCi z = 0()− Dax
dCi

dz z=0

= usCi, feed (4)

at z = L; dCi

dz z=L

= 0 (5)

 usCA 0()− Dax
dCA

dz z=0

− usCA, feed = 0 (6)

 dCA

dz z=L

= 0 (7)

All of the quantities appearing in the boundary conditions are known except for the reactor length.

Here, we will calculate the reactor length using equation (8). Upon doing so, equation (2) can be solved to

find the concentration of A along the length of the reactor, CA(z). Knowing that, and recognizing that the

volumetric flow rate is constant, the fractional conversion along the length of the reactor, fA(z), can be

calculated using equation (9) and plotted.

L = 50dp (8)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 2

fA z() = CA, feed −CA z()
CA, feed

 (9)

Plug Flow Reactor It was shown in the informational reading that equation (10) is an alternative

form of the general plug flow reactor mole balance design equation. Noting, as above, that the superficial
velocity is constant and can be taken outside of the derivative and that there is only one reaction, the plug
flow reactor mole balance for A takes the form of equation (11) after substitution of the rate expression. As

was the case with the axial dispersion model, we can solve this equation numerically and answer the

questions asked without writing a mole balance on B.

d
dz

usCi() = ν i, jrj
j=all

reactions

∑ (10)

dCA

dz
= f1 z,CA() = −kCA

us

 (11)

Equation (11) is an initial value ordinary differential equation that can be solved numerically. In order

to do so, no matter what software is used, it is necessary to provide initial values for the independent and
dependent variables, the final value of either the independent or dependent variable, and code that is

given values for the independent and dependent variables and that uses those values to evaluate the

function f1 in equation (11). Here the initial values will be provided at the reactor inlet where z = 0 and CA

= CA,feed. We will solve equation (11) using a range of final values from z = 0 to z = L. For each final value,

equation (11) can be solved to obtain the corresponding value of CA, and then equation (9) can be used

to calculate the corresponding value of fA. The results can then be used to generate the requested plot.

The code needed to evaluate function f1 in equation (11) will be given values for CA and z. It is then

trivial to evaluate f1, since the rate coefficient and superficial velocity are known constants. With that,

equation (11) can be solved numerically.

The resulting plots for the axial dispersion and plug flow reactor models are shown in Figure 1. If
you look closely at very low z values, you will see that the two models predict slightly different

conversions, but by the time the length of the reactor is fifty times the diameter of the bed packing, the
two models have become essentially equal. This is consistent with the statement in the informational

reading that adding the axial dispersion term has very little effect (compared to a PFR) except for very
short reactors.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 3

Figure 1. Conversion versus axial position in a PRF and a tubular reactor with axial dispersion.

Calculation Details Using MATLAB
Three MATLAB functions were used in the solution of this problem. One solves the PFR design

equations and returns the conversion versus length, one solves the axial dispersion model and returns

the conversion versus length and the third calls each of the first two and uses the results to make the plot
shown in Figure 1. At this point in the course, the solution of initial value ODEs using MATLAB and the

template files from Supplemental Unit S5 should be familiar. The third MATLAB function does no
calculations. Therefore, those two MATLAB functions will not be described here, but they accompany this

solution as Example_33_1.m and Example_33_1_prf.m.
The axial dispersion design equation is a mixed boundary ODE. The solution of mixed boundary

ODEs is described in Supplemental Unit S6, which also provides template files for solving them. There
are two template files provided. One is used if the ODE contains the reciprocal of the independent

variable which causes a singularity at the point where that variable equals zero. Examining equation (2), it

can be seen that the reciprocal of z is not present. Therefore the code presented here was generated by

modifying the MATLAB template file SolvBVDif.m, a copy of which was saved as Example_33_1_ad.m

and modified to solve this problem. The modified file accompanies this solution.

Length (m)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Pe
rc

en
t C

on
ve

rs
io

n

0

5

10

15

20

25
PFR
Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 4

In order to use the template file, the second-order ODE of equation (2) must be reduced to a set of
first order ODEs, and the boundary conditions must be re-written in terms of the new dependent

variables. This is a straightforward process and is explained in Supplemental Unit S6. We begin by

defining CA′ as in equation (12). With that definition, the second derivative of CA with respect to z will

equal the first derivative of CA′ with respect to z, as shown in equation (13). Substitution of equations (12)

and (13) into equation (2) leads to equation (14).

dCA

dz
= ′CA (12)

d 2CA

dz2
= d ′CA

dz
 (13)

−Dax
d ′CA

dz
+ us ′CA = −r ⇒ d ′CA

dz
= r + us ′CA

Dax

 (14)

Thus, the single second order ODE, equation (2), is equivalent to the two first order ODEs,

equations (12) and (14), re-written here as equations (15) and (16). Similarly substituting equation (12)
into the original boundary conditions, equations (6) and (7), leads to the corresponding boundary

conditions in terms of the new dependent variables, equations (17) and (18).

dCA

dz
= f1 z,CA , ′CA() = ′CA (15)

d ′CA

dz
= f2 z,CA , ′CA() = r + us ′CA

Dax

 (16)

usCA 0()− Dax
dCA

dz z=0

− usCA, feed = 0 ⇒

f3 CA 0(), ′CA 0(),CA L(), ′CA L()() = usCA 0()− Dax ′CA 0()− usCA, feed = 0
 (17)

dCA

dz z=L

= 0 ⇒ f4 CA 0(), ′CA 0(),CA L(), ′CA L()() = ′CA L() = 0 (18)

With the equations in this form, the modification of SolvBVDif.m can be undertaken. To begin, the
initial comment was replaced and the function definition was changed to it returns a vector containing

axial positions between 0 and L and a second vector containing the corresponding conversions. The

known constants from the problem statement were then entered. All of these modifications can be seen in
Listing 1.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 5

Listing 1. Modified initial comment and function statement followed by entry of known constants.

The second modification occurs within an internal function named bvodes; this is where the ODEs

are evaluated. This internal function is passed a value for the independent variable (as the scalar x) and

corresponding values for the dependent variables (as the vector y). The modification involves using these

values to evaluate functions f1 and f2 in equations (15) and (16) and returning them in a column vector

named dydx. Doing so is quite straightforward, as can be seen in Listing 2. The dependent variables

were first extracted from the vector y, giving them more meaningful names. The rate was then calculated.

Finally, the functions f1 and f2, equations (15) and (16), were evaluated and returned as the elements of

the vector, dydx.

Listing 2. Modified version of the internal function bvodes.

The third modification occurs within an internal function named bvs; this is where the boundary

conditions are evaluated. This internal function is passed the values of the dependent variables at z = 0

(CA(0) and CA′(0)) in a vector named y_at_start and it is passed the values of CA(L) and CA′(L) in a

vector named y_at_end. The modification involves using these values to evaluate functions f3 and f4 in

equations (17) and (18) and returning them in a column vector named res. Doing so is quite

% Modified version of the MATLAB template file SolvBVDif.m used to model
% the tubular reactor with axial dispersion in Example 33.1 of "A First
% Course on Kinetics and Reaction Engineering."
%
function [ax_length,ax_conv] = Example_33_1_ad
 % Known quantities and constants (in consistent units)
 k = 1.2E-2; % /s
 CAfeed = 1.0e-3; % mol/m^3
 Peax = 2.0;
 us = 0.01; % m/s
 d = 0.004; % m
 L = 50*d;
 Dax = us*d/Peax;

 % Function that evaluates the derivatives
 function dydx = bvodes(x,y)
 CA = y(1);
 CA_prime = y(2);
 r = k*CA;
 dydx = [
 CA_prime
 (r + us*CA_prime)/Dax;
];
 end % of internal function bvodes

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 6

straightforward, as can be seen in Listing 3. The values of the dependent variables at z = 0 and z = L are

first extracted from the vectors y_at_start and y_at_end, giving them more meaningful names, and

then functions f3 and f4 are evaluated and stored as the elements of the vector res.

Listing 3. Modified version of the internal function bvs.

The fourth modification involves creating an initial mesh of points within the reactor where the

values of the dependent variables will be calculated. As can be seen in Listing 4. I chose to simply use

100 points between z = 0 and z = L. The code that solves the ODEs may change the number of mesh

points, so after solving the equations the number of mesh points may not equal 100. The fifth modification

involves providing a guess for the value of the dependent variables at those mesh points. You only
provide a single guess for each dependent variable, and that same guess is used at all of the mesh

points. As can be seen in Listing 4, I used the feed concentration of A as my guess for CA and I used the

rate at the feed concentration divided by the superficial velocity as my guess for CA′. You may be

wondering how I arrived at the latter guess. If you look at equation (11), you can see that my guess is

simply the value of CA′ at the inlet to a PFR.

Listing 4. Modification to set up the initial mesh and provide guesses.

 % Function that calculates the errors at the boundaries
 function res = bvs(y_at_start,y_at_end)
 CA_inlet = y_at_start(1);
 CA_outlet = y_at_end(1);
 CA_prime_inlet = y_at_start(2);
 CA_prime_outlet = y_at_end(2);
 res = [
 us*CA_inlet - Dax*CA_prime_inlet - us*CAfeed;
 CA_prime_outlet;
];
 end % of internal function bvs

 % Set up the initial mesh
 x_range_low = 0.0;
 x_range_high = L;
 n_mesh_points = 100.;

 % The next line creates an array for the independent variable
 x = linspace(x_range_low,x_range_high,n_mesh_points);

 % Guesses
 yinit = [
 CAfeed
 k*CAfeed/us
];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 7

The final modification occurs after the equations have been solved. In this case it involves using the
result to calculate the conversion at each mesh point and then setting the return variables so they contain

the z values of the mesh points and the conversions at the mesh points. These modifications can be seen

in Listing 5.

Listing 5. Modification to assign values to the return variables.

As already noted, this function is called by the function, Example_33_1, which uses the results

(along with PFR results obtained by calling Example_33_1_pfr) to make the plot shown as Figure 1.

 % Create a structure containing the mesh and guesses
 solinit=bvpinit(x,yinit);

 % Solve the odes
 result = bvp4c(@bvodes,@bvs,solinit);

 ax_length = result.x;
 ax_conv = (CAfeed - result.y(1,:))*100./CAfeed;

end % of file Example_33_1_ad.m

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 33.1 8

