AFCoKaRE Practice Problem 32.1

Purpose: This problem will allow you to practice the quantitative analysis of a semibatch reactor.

Problem Statement: Acid A is to be neutralized using base B by slowly adding a 2 M solution of the base to a 10 M solution of the acid. The neutralization reaction is irreversible with a heat of reaction equal to $-44 \mathrm{kcal} \mathrm{mol}^{-1}$. The reaction is first order in both acid and base with a pre-exponential factor of $8.11 \times 10^{12} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and an activation energy of $17.7 \mathrm{kcal} \mathrm{mol}^{-1}$. A jacketed, perfectly mixed, 25 L batch reactor will be charged with 4 L of the 10 M solution of A at $20^{\circ} \mathrm{C}$, while cooling water at $20^{\circ} \mathrm{C}$ flows at $0.1 \mathrm{~kg} \mathrm{~min}^{-1}$ to the perfectly mixed, 0.5 L jacket. The heat transfer area is $0.6 \mathrm{ft}^{2}$ and the heat transfer coefficient is $1.13 \times 10^{4} \mathrm{cal} \mathrm{ft}^{-2} \mathrm{~h}^{-1} \mathrm{~K}^{-1}$. The cooling water and the solutions of A and B may be taken to have a constant density of $1 \mathrm{~g} \mathrm{~cm}^{-3}$ and a constant heat capacity of $1 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$. The pressure in the reactor will be constant and equal to 1 atm. Plot the acid concentration and the reactor temperature as a function of time during which the base solution at $20^{\circ} \mathrm{C}$ is being added at a rate of $1.0 \mathrm{~L} \mathrm{~min}^{-1}$.

