A First Course on Kinetics and Reaction Engineering Unit 32. Ideal Semi-Batch Reactors

Definitions

semi-batch operation - while reaction is occurring, at least one, but not all, reagent flows into or out of the reactor.

Nomenclature

Homenolatare	
ΔH_j	heat of reaction j
$\Delta H_{latent,i}$ latent heat associated with any phase change that occurs when species i is added to or	
	removed from a semi-batch reactor
$v_{i,j}$	stoichiometric coefficient of species i in reaction j ; value is positive for products and negative for
	reactants
$ ho_i$	density of pure species <i>i</i>
C_i	concentration of species i
$\hat{C}_{p,i}$	constant pressure specific molar heat capacity of species i
M_i	molecular weight of species i
P	pressure, a subscript denotes a partial pressure of that species and an additional asterisk
	denotes the saturation vapor pressure of that species
\dot{Q}	net heat input into a reactor through its walls or the walls of a submerged cooling coil
T	temperature; a subscripted e denotes the (external) temperature of the heat transfer media
V	volume within which reaction takes place, not necessarily the volume of the entire reactor; a
	superscripted zero denotes the volume at the start of processing
\dot{V}	inlet volumetric flow rate
\dot{W}	net rate at which mechanical work is done by a reactor system on its surroundings through shafts
	and moving boundaries
h_i	Henry's law constant for species <i>i</i>
$\hat{h_i}$	specific enthalpy of species $\it i$ at the instantaneously prevailing conditions within the reactor, the
	additional subscript "stream" denotes the specific enthalpy of species $\it i$ at the instantaneously
	prevailing input or outlet stream conditions
n_i	moles of species i
\dot{n}_i	molar flow rate of species i

liquid phase mole fraction of species i

the generalized rate of reaction j

 r_i

t

 x_i

time

Equations

$$\frac{dn_i}{dt} = \dot{n}_i + V \sum_{\substack{j=all \\ reactions}} v_{i,j} r_j \tag{32.1}$$

$$\dot{Q} - \dot{W} = \sum_{\substack{i=all\\ species}} \dot{n}_i \left(\hat{h}_i - \hat{h}_{i,stream} \right)
+ \frac{dT}{dt} \sum_{\substack{i=all\\ species}} \left(n_i \hat{C}_{pi} \right) + V \sum_{\substack{j=all\\ reactions}} \left(r_j \Delta H_j \right) - \frac{dP}{dt} V - P \frac{dV}{dt}$$
(32.2)

$$\dot{n}_{i} \left(\hat{h}_{i} - \hat{h}_{i,stream} \right) = \dot{n}_{i} \left(\int_{T_{stream}}^{T} \hat{C}_{p,i} dT + \Delta H_{latent,i} \right)$$
(32.3)

$$P_i = x_i P_i^* \tag{32.4}$$

$$P_i h_i = C_i \tag{32.5}$$

$$V(t) = \sum_{\substack{i=all \\ species}} \frac{n_i(t)M_i}{\rho_i}$$
 (32.6)

$$V(t) = V^0 + \dot{V}t \tag{32.7}$$