A First Course on Kinetics and Reaction Engineering Unit 32. Ideal Semi-Batch Reactors

Definitions

semi-batch operation - while reaction is occurring, at least one, but not all, reagent flows into or out of the reactor.

Equations

$$
\begin{align*}
& \begin{aligned}
& \frac{d n_{i}}{d t}= \dot{n}_{i}+V \sum_{\substack{j=a l l \\
\text { reactions }}} v_{i, j} r_{j} \\
& \dot{Q}-\dot{W}= \sum_{\substack{i=a l l \\
\text { species }}} \dot{n}_{i}\left(\hat{h}_{i}-\hat{h}_{i, s t r e a m}\right) \\
&+\frac{d T}{d t} \sum_{\substack{i=a l l \\
\text { species }}}\left(n_{i} \hat{C}_{p i}\right)+V \sum_{\substack{j=a l l \\
\text { reactions }}}\left(r_{j} \Delta H_{j}\right)-\frac{d P}{d t} V-P \frac{d V}{d t} \\
& \dot{n}_{i}\left(\hat{h}_{i}-\hat{h}_{i, \text { stream }}\right)=\dot{n}_{i}\left(\int_{T_{\text {stream }}}^{T} \hat{C}_{p, i} d T+\Delta H_{\text {latent }, i}\right) \\
& P_{i}=x_{i} P_{i}^{*} \\
& P_{i} h_{i}= C_{i} \\
& V(t)= \sum_{\substack{i=a l l \\
\text { species }}} \frac{n_{i}(t) M_{i}}{\rho_{i}} \\
& V(t)= V^{0}+\dot{V} t
\end{aligned} \tag{32.1}
\end{align*}
$$

