
A First Course on Kinetics and Reaction Engineering

Example 31.2

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit. It illustrates the analysis of a recycle PFR.

Problem Statement
A recycle PFR is being designed to produce D from A according to reaction (1), but the undesired 

reaction (2) also takes place. These reactions are irreversible, and their rates are given by equations (3) 

and (4). The reaction takes place in the liquid phase; the heat capacity of the liquid is constant and equal 
to 281 J L-1 K-1. The heat of reaction (1) is -52 kJ mol-1 and that of reaction (2) is -38 kJ mol-1. The reactor 

will be adiabatic with a diameter equal to 0.1 dm. The feed to the process will flow at a rate of 150 L min-1 
and a temperature of 420 K; the concentration of A is 4 mol L-1 and there is no D or U in the feed. If the 

recycle ratio is equal to 4, how long must the reactor be to achieve 50% overall conversion, what will the 
resulting overall selectivity (mol D per mol U) equal, and what will the outlet temperature be?

A → D (1)

A → U (2)

  
r1 = 5.07 ×106  min−1( )exp −65 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA  (3)

  
r2 = 8.64×104  L mol−1  min−1( )exp −58.1 kJ mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CA
2  (4)

Problem Analysis
In this problem we are given the rate expressions and asked questions about the performance of 

the reactor, so this is a reaction engineering problem. The reactor is a PFR, and we will be analyzing its 

steady state performance since the problem does not mention any changes in its operation or things like 
start-up or shut-down. Insufficient information is provided to write a momentum balance, so we will 

assume pressure drop is negligible. Similarly, since the reaction takes place in the liquid phase, we will 
assume the fluid density to be constant. In order to answer the questions posed we will write mole and 

energy balance design equations for the PFR. It is likely that we will not be able to solve these equations 
independently. Instead, mole and energy balances will also be generated for the recycle mixing point and 

they will be solved simultaneously with the PFR design equations.
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Problem Solution

The system can be represented schematically as shown in Figure 1. Reading through the problem 

statement we find the following quantities to be specified:  
!Cp = 281 J L-1 K-1, ΔH1(T) = -52 kJ mol-1, 

ΔH2(T) = -38 kJ mol-1, D = 0.1 dm,  
!Va = 150 L min-1, Ta = 420 K, CA,a = 4 mol L-1, CD,a = 0 mol L-1, CU,a = 0 

mol L-1, RR = 4 and fA,overall = 0.5.

Figure 1. Schematic representation of the recycle PFR system of Example 31.1.

The feed molar flow rates can be calculated from the known feed concentrations and volumetric 

flow rate according to equations (5) through (7). Since the fluid density is assumed to be constant and the 
system operates at steady state, the outlet volumetric flow must equal the feed volumetric flow, equation 

(8). The known recycle ratio then permits the calculation of the volumetric recycle flow, equation (9). A 
mass balance at the mixing point, together with the assumption of constant density then allows 

calculation of the volumetric flow rate entering the reactor, equation (10). Again, since the fluid density is 
constant the volumetric flow leaving the reactor must be the same, equation (11).

 !nA,a =
!VaCA,a  (5)

 !nD,a =
!VaCD,a  (6)

 !nU ,a =
!VaCU ,a  (7)

 
!Vd = !Va  (8)

 
!Vr = RR

!Vd  (9)

 
!Vb = !Va + !Vr  (10)

 
!Vc = !Vb  (11)

The generalized steady state PFR mole and energy balances are given in equations (12) and (13). 

In the present case there are two reactions, so the summations over j expand to give two terms. The 

reactor is adiabatic, so the heat transfer term in the energy balance equation is set to zero. The 

volumetric heat capacity of the fluid as a whole is provided, so the summation over the individual species 
molar heat capacities is replaced. After all these simplifications the mole balances on A, D and U reduce 

to equations (14) through (16) and the energy balance reduces to equation (17).

1 2
a b c d

r

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.2 2



 

d !ni
dz

= πD2

4
ν i, jrj

j=all
reactions

∑  (12)

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dT
dz

+ πD2

4
rjΔH j( )

j=all
reactions

∑  (13)

   

d !nA

dz
= f1 z, !nA, !nD , !nU ,T( ) = − πD2

4
r1 + r2( )  (14)

   

d !nD

dz
= f2 z, !nA, !nD , !nU ,T( ) = πD2

4
r1  (15)

   

d !nU

dz
= f3 z, !nA, !nD , !nU ,T( ) = πD2

4
r2  (16)

   

dT
dz

= f4 z, !nA, !nD , !nU ,T( ) = − πD2

4
r1ΔH1 T( ) + r2ΔH2 T( )( )

!V "Cp

 (17)

In order to solve these equations numerically, no matter what software one uses, it will be 

necessary to provide (a) initial values (at the reactor inlet) of the independent (z) and dependent (ṅA, ṅD, 
ṅU and T) variables, (b) a final value (at the reactor outlet) of either the independent variable or one of the 

dependent variables and (c) code that is given values of the independent and dependent variables and 

uses them to evaluate functions f1 through f4 in equations (14) through (17).

The initial values, equations (18) through (21), are not known, and consequently it will not be 

possible to solve the PFR design equations independently. The final value of the molar flow rate of A, ṅA,c, 

can be computed since the overall conversion of A is specified. That is, the outlet molar flow rate of A can 

be computed from the known feed molar flow rate and overall conversion, equation (22). A mole balance 
on A at the split, point 2 in Figure 1, then allows the calculation of the molar flow rate of A leaving the 

reactor, equation (23).

 !nA z = 0( ) = !nA,b  (18)

 !nD z = 0( ) = !nD,b  (19)

 !nU z = 0( ) = !nU ,b  (20)

T z = 0( ) = Tb  (21)

 !nA,d = !nA,a 1− fA,overall( )  (22)
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 !nA z = L( ) = !nA,c = !nA,r + !nA,d = RR !nA,d + !nA,d = 1+ RR( ) !nA,d  (23)

Looking at functions f1 through f4 in equations (14) through (17), the code that evaluates them will 

be given values of z, ṅA, ṅD, ṅU and T, while  
!Cp , ΔH1(T), ΔH2(T), D and  

!Va  are known constants. 

Equations (3) and (4) can be used to calculate the reaction rates, but in order to do so the concentration 

of A must first be calculated. The volumetric flow rate within the reactor will equal  
!Vb (a known constant) 

since the fluid density is constant, and the code will be given a value for ṅA, so the concentration can be 

computed using equation (24). Therefore, the code that evaluates functions f1 through f4 in equations (14) 

through (17) can be written and used to numerically solve the PFR design equations.

 
CA =

!nA
!Vb

 (24)

To summarize, the only things needed in order to solve the PFR design equations numerically are 

the initial values, that is ṅA,b, ṅD,b, ṅU,b and Tb. Mole and energy balances on the mixing point, labeled 1 in 

Figure 1, can be used to find these missing values. In the informational reading for this unit, a general 
mole balance was written for the mixing point, and then a mole balance at the split point and the definition 

of the recycle ratio were used to eliminate the molar flow in the recycle stream from the equation, 
replacing it with the molar flow rate leaving the reactor. That equation is reproduced here as equation 

(25). An energy balance on the mixing point is given in equation (26) in terms of the molar flow rates of 
the individual species. Writing the mole balance of equation (25) for each of the three species gives 

equations (27) through (29). Replacing the molar heat capacities in equation (26) with the volumetric heat 
capacity of the fluid as a whole leads to the form of the energy balance given in equation (30).

 
!ni,a +

RR !ni,c
1+ RR

− !ni,b = 0  (25)

 

!ni,a Ĉp,i dT
Ta

Tb

∫
i=all
species

∑ + !ni,r Ĉp,i dT
Tc =Tr( )

Tb

∫
i=all
species

∑ = 0  (26)

 
!nA,a +

RR !nA,c
1+ RR

− !nA,b = f5 !nA,b , !nD,b , !nU ,b ,Tb( ) = 0  (27)

 
!nD,a +

RR !nD,c
1+ RR

− !nD,b = f6 !nA,b , !nD,b , !nU ,b ,Tb( ) = 0  (28)

 
!nU ,a +

RR !nU ,c
1+ RR

− !nU ,b = f7 !nA,b , !nD,b , !nU ,b ,Tb( ) = 0  (29)

 
!Va "Cp Tb −Ta( ) + !Vr "Cp Tb −Tc( ) = f8 !nA,b , !nD,b , !nU ,b ,Tb( ) = 0  (30)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.2 4



Looking at the mixing point design equations, (27) through (30), it can be seen that they contain 

eight unknown quantities (ṅA,b, ṅD,b, ṅU,b, Tb ṅA,c, ṅD,c, ṅU,c and Tc) while there are only four equations. 

Clearly, these equations can only be solved to find the value of four of the unknowns. The key to solving 

these equations numerically is to choose the stream b quantities as the unknowns to be solved for, as 

equations (27) through (30) indicate. In order to solve the equations numerically, it will be necessary to 
provide (a) guesses for the values of the unknowns, which is easy to do, and (b) code that is given values 

for the unknowns and that uses them to evaluate the functions f5 through f8 in equations (27) through 

(30).

By choosing ṅA,b, ṅD,b, ṅU,b and Tb as the unknowns to be solved for, writing that code is easy. The 

code will be given value for ṅA,b, ṅD,b, ṅU,b and Tb. Those values can then be used as the initial conditions 

for the numerical solution of the PFR design equations. Solving the PFR design equations yields values 

for L, ṅA,c, ṅD,c, ṅU,c and Tc. Once that is done, functions f5 through f8 in equations (27) through (30) can 

be evaluated.

In that way, equations (27) through (30) can be solved numerically to find ṅA,b, ṅD,b, ṅU,b and Tb. 

Those results can then be used again to solve the PFR design equations to find L, ṅA,c, ṅD,c, ṅU,c and Tc. 

Doing so, one finds that the reactor must have a length of 117 dm to meet the specification of 50% 

conversion and the outlet temperature will equal 780 K. The molar flow rates of D and U leaving the 
process can then be calculated using equation (31). Doing so shows that the selectivity of the process will  

be 8.7 moles of D per mole of U.

 
!ni,c = !ni,r + !ni,d = RR !ni,d + !ni,d     ⇒     !ni,d =

!ni,c
1+ RR( )  (31)

Using a recycle PFR in this situation has two benefits. First, since the reaction is adiabatic, the 

recycle stream is hotter than the feed. When the two streams are mixed, the resulting stream entering the 

PFR has a higher temperature than the feed. As a consequence, the reaction rate inside the reactor is 
larger than it would have been if there were no recycle. Thus, with recycle we expect the required reactor 
volume to be smaller. Secondly, the instantaneous selectivity parameter, equation (32), shows that high 

selectivity is favored by lower concentrations of A. The high recycle ratio in this case dilutes the feed so 

that the concentration of A entering the reactor is much smaller than the feed concentration of A, and this 
favors the production of D over the production of U. There are some trade-offs, however. While the higher 
temperature at the reactor inlet leads to higher rates, it also lowers the selectivity as can be seen from 

equation (32) noting that E2 is less than E1. In addition, the greater volumetric flow through the reactor 

means that a larger reactor volume is needed to achieve a given space time compared to a system with 

no recycle. Still, in this case the use of recycle leads to very high selectivity for the desired product. In a 
real-world situation, the decision on whether to use recycle and, if so, what recycle ratio to use would be 
determined on the basis of an economic analysis.
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SD
U
= r1
r2
=

k0,1
k0,2

⎛
⎝⎜

⎞
⎠⎟
exp E2 − E1

RT
⎛
⎝⎜

⎞
⎠⎟CA

−1  (32)

Calculation Details Using MATLAB
Two MATLAB functions were written to perform the calculations needed to solve this problem. The 

first, Example_31_2_pfr, takes the inlet molar flows and temperature as arguments and solves the PFR 

design equations, returning the reactor length and the outlet stream molar flows and temperature. The 
second MATLAB function, Example_31_2, performs the calculations needed to evaluate the recycle PFR, 
solving the mixing point design equations and calling the first function as necessary.

MATLAB function for modeling the PFR. The PFR design equations are initial value ODEs. 

Supplemental Unit S5 provides template files that can be used to solve them. In this problem, the final 
value of a dependent variable is provided, so the appropriate template file is SolvIVDifD.m. Before that file 
can be used, you must make six required modifications.

To begin, I made a copy of the template file and saved it as Example_31_2_pfr.m; a copy of the 

final version of that file accompanies this solution. Since the function name must match the filename, I 
changed the name of the function to Example_31_2_pfr. At the same time, I changed the function 
declaration so that the inlet molar flows and temperature were passed to the function as arguments, and 

so that the reactor length, outlet molar flows and outlet temperature were returned. The template file 

begins with a long set of comments describing what it does and how to use it; I replaced these comments 
with a brief comment stating the purpose of the modified version. None of these modifications were 
required.

The first required modification involves entering all the known quantities from the problem 

statement along with constants that will be needed (from handbooks or other reference sources). As 
these are entered, they should be converted to a consistent set of units. Listing 1 shows the first part of 
the modified file.

The second required modification involves entering the code to evaluate functions f1 through f4 in 

equations (14) through (17). The internal function that evaluates the functions is named odeqns; the 

independent variable is passed into it as the scalar t and the dependent variables are passed in as the 

vector z. I find it useful to start by extract the dependent variables from that vector and assign their values 

to local variables with the names similar to those used in the problem statement. Once that is done, the 

concentration of A, the rate coefficients and the reaction rates can be calculated as described in the 

solution. The functions f1 through f4 in equations (14) through (17) then can be evaluated, saving the 

results in the vector dzdt which is returned by odeqns. These modifications are shown in Listing 2.

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.2 6



Listing 1. Non-required modifications and entry of known constants.

Listing 2. Internal function odeqns after required modifications have been made.

% Modified version of the AFCoKaRE MATLAB template file SolvIVDifI.m used
% to model the PFR in Example 31.2 of "A First Course on Kinetics and
% Reaction Engineering."
%
function [nAout,nDout,nUout,Tout,L] = Example_31_2_pfr(nAin,nDin,nUin,Tin)
    % Known quantities and constants (in consistent units)
   k01 = 5.07e6; % /min
   E1 = 65.; % kJ/mol
   k02 = 8.64e4; % dm^3/mol/min
   E2 = 58.1; % kJ/mol
   Cp = 281./1000.; % kJ/dm^3/K
   dH1 = -52.; % kJ/mol
   dH2 = -38.; % kJ/mol
   D = 0.1; % dm
   VFRa = 150.; % dm^3/min
   CAa = 4.0; % mol/dm^3
   RR = 4.0;
   fA = 0.5;
   R = 8.31446/1000.; % kJ/mol/K
   VFRd = VFRa;
   VFRr = RR*VFRd;
   VFRb = VFRr + VFRa;
   nAa = VFRa*CAa;

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        % t is the value of the independent variable
        % z is a vector containing the values of the dependent variables
        nA = z(1);
        nD = z(2);
        nU = z(3);
        T = z(4);
        CA = nA/VFRb;
        k1 = k01*exp(-E1/R/T);
        k2 = k02*exp(-E2/R/T);
        r1 = k1*CA;
        r2 = k2*CA^2;
        dzdt = [
            -pi()*D^2/4*(r1 + r2);
            pi()*D^2/4*r1;
            pi()*D^2/4*r2;
            -pi()*D^2/4*(r1*dH1 + r2*dH2)/VFRb/Cp;
        ];
    end % of internal function odeqns
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The third required modification involves providing the initial values of the independent and 

dependent variables. The initial values of the dependent variables are entered as a vector named z0, and 

they must use the same mapping of the problem variables to the vector z0 as was used previously for z 

in the internal function odeqns. The results of performing this modification are shown in Listing 3.

Listing 3. Specification of the initial values.

The fourth and fifth required modifications involve providing the final value of one dependent 

variable, in this problem ṅA,out. The first step (fourth modification) is to select a value for tf (the final value 

of the independent variable, z) that is much greater than the actual reactor length. Of course, you don’t 

know what the length is at this point, so all you can do is set tf to a large number. The reactor length 

should never reach this value. If it does, the code will print a warning and instruct you to set tf to a larger 

value.

The second step (fifth modification) is to provide the final condition. Basically, this involves adding 

the code to calculate the value of a variable named stop_when. The variable, stop_when, should equal 

zero when the final condition is reached. For this problem, the final condition is given in equation (23). 

Noting that z(1) will equal the current value of ṅA,c the current value of ṅA,d can be calculated using 

equation (31). The defining equation for the overall conversion, equation (33), can then be rearranged to 

give an expression that will equal zero at the specified final conversion; the variable stop_when is simply 

set equal to that expression as shown in Listing 4.

 
fA,overall =

!nA,a − !nA,d

!nA,a

     ⇒      fA,overall −
!nA,a − !nA,d

!nA,a

= 0  (33)

The sixth and final required modification is to use the results from solving the ODEs to calculate 
whatever the problem requested. In this case, all that needs to be done is to set the values of the reactor 

length and the outlet molar flows and temperature so that they will be returned by the function. This is 

shown in Listing 5.

    % Initial and final values
    t0 = 0;
    z0 = [
        nAin
        nDin
        nUin
        Tin
    ];
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Listing 4. Modifications to specify the final conditions.

Listing 5. Final modification where the return variables are set to the proper values.

MATLAB function for evaluating the recycle PFR. Analysis of the recycle PFR involves the 

simultaneous solution of the mixing point design equations and the PFR design equations as described in 
the solution. The mixing point design equations are non-linear, non-differential equations; Supplemental 

Unit S2 describes how to solve such equations numerically using MATLAB, and it provides a template file 
named SolvNonDif.m for doing so. That template file was used as the starting point for the function for 

analyzing the recycle PFR. 
Before it can be used to solve a problem, SolvNonDif.m must be modified in four places, each 

indicated by a comment that begins “% EDIT HERE”. In addition to those required modifications, I 
recommend that you work with a copy of the file that has been given a more meaningful name. In this 

case, I made a copy of the file and saved it as Example_31_2.m; a copy of the final version of that file 
accompanies this solution. Since the function name must match the filename, I changed the name of the 

function to Example_31_2. At the same time, I changed the function so that it does not return any values. 
The template file begins with a long set of comments describing what it does and how to use it; I replaced 

these comments with a brief comment stating the purpose of the modified version. None of these 
modifications were required. The first required modification is to enter the values of all universal and 

problem specific constants, converting them to a consistent set of units as they are entered. Listing 6 
shows the results of all these modifications.

    tf = 1.0E4;
    options = odeset('Events',@stop);
    [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);
 
    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        
        nAd = z(1)/(1+RR);
        stop_when = fA - (nAa - nAd)/nAa;
    end % of internal function stop

    % Set the return values
    L = t_f;
    nAout = z(1);
    nDout = z(2);
    nUout = z(3);
    Tout = z(4);
    
end % of Example_31_2_pfr.m

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.2 9



Listing 6. Initial modifications to the template file SolvNonDif.m.

The next required modification is to provide code that evaluates the functions, f5 through f8, in 

equations (27) through (30). The internal function that evaluates the functions is named evalEqns; 

values for the unknowns are passed in as the vector z. I find it useful to start by extract the unknowns 

from that vector and assign their values to local variables with the names similar to those used in the 

problem statement. Those unknowns can then be used to solve the PFR design equations by calling the 
function Example_31_2_pfr that was just described. Upon doing so, the molar flows and temperature of 

stream c are returned. The functions, f5 through f8, in equations (27) through (30) then can be evaluated, 

saving the results in the vector f which is returned by evalEqns. Listing 7 shows these modifications.

Listing 7. Modifications to evaluate the functions being solved.

% Modified version of the AFCoKaRE MATLAB template file SolvNonDif.m used
% to model the recycle PFR in Example 31.2 of "A First Course on Kinetics 
% and Reaction Engineering."
%
function Example_31_2
    % Known quantities and constants (in consistent units)
   Cp = 281./1000.; % kJ/dm^3/K
   VFRa = 150.; % dm^3/min
   Ta = 420; % K
   CAa = 4.0; % mol/dm^3
   RR = 4.0;
   fA = 0.5;
   R = 8.31446/1000.; % kJ/mol/K
   VFRd = VFRa;
   VFRr = RR*VFRd;
   VFRb = VFRr + VFRa;
   VFRc = VFRb;
   nAa = VFRa*CAa;
   nDa = 0;
   nUa = 0;

    % Function that evaluates the equations
    function f = evalEqns(z)
        nAb = z(1);
        nDb = z(2);
        nUb = z(3);
        Tb = z(4);
        [nAc,nDc,nUc,Tc,L] = Example_31_2_pfr(nAb,nDb,nUb,Tb);
        f = [
            nAa + RR*nAc/(1+RR) - nAb;
            nDa + RR*nDc/(1+RR) - nDb;
            nUa + RR*nUc/(1+RR) - nUb;
            VFRa*Cp*(Tb-Ta) + VFRr*Cp*(Tb-Tc);
        ];
    end % of internal function evalEqns
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The third required modification is where guesses for the unknowns are provided. The guesses are 
entered in the array named z_guess. This is perhaps the trickiest part of the solution because bad 

guesses may cause the solver to converge to an undesired steady state (multiple steady states are 
possible), or they may cause the solver to fail to converge to any solution. Listing 8 shows guesses that 

worked for this particular problem.

Listing 8. Modification where guesses are provided for the unknowns.

The final modification is where any additional calculations are performed after the non-linear 

equations, that is, the mixing point design equations, have been solved. The first thing that must be done 
is to use the results to solve the PFR design equations to find the reactor length and the molar flows and 

temperature of stream c. The problem asks for the outlet temperature, but since point 2 is a simple stream 

split, the outlet temperature (stream d) will be equal to the temperature of stream c. The outlet molar flow 

rates of D and U can be calculated using equation (31), and then the selectivity (moles of D per mole of 
U) can be calculated using equation (32). These modifications are shown in Listing 9.

Listing 9. Final modification where the results of solving the mixing point design equations are used to 
calculate the PFR length, the process selectivity and the product stream temperature.

At this point, Example_31_2.m can be executed by by typing Example_31_2 at the MATLAB 

command prompt. The resulting output is shown in Listing 10. It is important to check first, that the PRF 
code stopped because the specified conversion was reached and second, that the non-linear equation 

solver converged. In the former case, a warning would have been printed if the specified reactor length 
was reached instead of the specified conversion. No such warning appears, so the proper final condition 

    % guesses for the solution
    z_guess = [
        0.5*nAa*(1+RR);
        0.1*nAa*(1+RR);
        0.1*nAa*(1+RR);
        Ta + 20;
    ];

    % Solve the PFR design equations
    nAb = z(1);
    nDb = z(2);
    nUb = z(3);
    Tb = z(4);
    [nAc,nDc,nUc,Tc,L] = Example_31_2_pfr(nAb,nDb,nUb,Tb);
    nDd = nDc/(1+RR);
    nUd = nUc/(1+RR);
    L
    sel_D_per_U = nDd/nUd
    Td = Tc
    
end % of Example_31_2.m
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was reached. In the latter case, the output reports that the equations were solved. Therefore, the results 
produced by the calculations can be accepted.

Listing 10. Output from the execution of Example_30_1.

>> Example_31_2

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
   1.0e+03 *

    1.8000
    1.0765
    0.1235
    0.7079

The corresponding values of the functions being solved are as follows:

f =
   1.0e-10 *

         0
    0.0023
         0
   -0.2365

L =
  116.9273

sel_D_per_U =
    8.7195

Td =
  779.8548
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