
A First Course on Kinetics and Reaction Engineering

Example 31.1

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this

unit. It also illustrates the approach described in the informational reading for simultaneously solving the
PFR design equations and the mixing point design equations.

Problem Statement
A certain type of cell grows at a rate given by the equation (1) below where [S] is the substrate

concentration and [X] is the cell concentration. Each gram of cell mass produced consumes 2.2 g of
substrate. A tubular, plug flow fermentor with recycle will be used to grow these cells. Its operation is

essentially isothermal, and equation (1) includes the rate coefficients for the temperature at which the
reactor will operate. The feed to the process will contain 0.04 g S cm-3 and will flow at 60 cm3 min–1; no

cell mass will be present in the feed. If the reactor volume is 4 L and the recycle ratio is equal to 0.2, what
will be the outlet cell mass concentration?

r =
0.034 min-1() S[] X[]
0.001 g cm-1() + S[] (1)

Problem Analysis
Since the rate expression is known and we are asked questions about reactor performance, this is

a reaction engineering problem. It involves a PFR with a recycle stream and a cell growth reaction. Since

the rate and concentrations are in mass units, mass balances on the substrate and cell mass will be used
to model the reactor. Making use of the effective stoichiometry given in the problem statement, the
reaction can be represented as in equation (2) where the stoichiometry is mass based. The problem

states that the reactor will be isothermal, so an energy balance will not be included in the design

equations. In addition, the problem does not provide sufficient detail to account for pressure drop, so a
momentum balance will not be used, either. Mole balances on the mixing point likely will need to be
solved simultaneously with the PFR design equations.

2.2 S → X (2)

Problem Solution

The system can be represented schematically shown in Figure 1. Reading through the problem

statement, one finds that the following quantities are specified: CS,a = 0.04 g cm-3,
!Va= 60 cm3 min–1,

CX,a = 0 g cm-3, V = 4 L and RR = 0.2. From these quantities, the feed mass flow rates can be calculated

using equations (3) and (4).

AFCoKaRE, Example 31.1 1

 !mS ,a = !VaCS ,a (3)

 !mX ,a = !VaCX ,a (4)

Figure 1. Schematic representation of the recycle PFR system of Example 31.1.

Assuming the fluid density to be constant, the volumetric flow rates can be found using equations

(5) through (7).

!Vd = !Va (5)

!Vr = RR

!Vd (6)

!Vb = !Va + !Vr (7)

!Vc = !Vb (8)

Using the cumulative reactor volume as the independent variable, and using the effective mass
stoichiometry, the material balance design equations for the PFR take the form shown in equations (9)

and (10). As noted in the problem analysis, these two equations are the only design equations for the
PFR. In order to solve these equations numerically, no matter what software one uses, it will be

necessary to provide (a) initial values, (b) a final value and (c) code that is given values of the

independent and dependent variables and uses them to evaluate functions f1 and f2 in equations (9) and

(10).

d !mS

dV
= f1 V , !mS , !mX() = −2.2r (9)

d !mX

dV
= f2 V , !mS , !mX() = r (10)

At the inlet to the reactor, corresponding to the initial values, the cumulative reactor volume is equal

to zero, but the mass flow rates of S and X are not known. The final value in this case is that the

cumulative reactor volume will equal the known PFR volume. The code that must be provided to evaluate

functions f1 and f2 will be given values for the independent and dependent variables (!V , ṁS and ṁX).

Knowing those values, the mass concentrations of S and X can be computed using equations (11) and

1 2
a b c d

r

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 2

(12). It is important to note that the volumetric flow rate in these equations is the volumetric flow rate in

the PFR; it is not the volumetric flow rate entering the process. Once that is done, the rate can be

computed using equation (1), and knowing the rate, the functions f1 and f2 can be evaluated.

S[] = !mS

!Vb
 (11)

X[] = !mX

!Vb
 (12)

It is not possible to solve the PFR design equations at this point because the initial values are not

known. Instead, the design equations for the mixing point must be formulated. As shown in the
informational reading using molar flow rates, equation (31.5), the material balances for the mixing point

take the form of equations (13) and (14).

!mS ,a +

RR !mS ,c

1+ RR

− !mS ,b = f3 !mS ,b , !mX ,b() = 0 (13)

!mX ,a +

RR !mX ,c

1+ RR

− !mX ,b = f4 !mS ,b , !mX ,b() = 0 (14)

The two mixing point design equations, (13) and (14), contain four unknown quantities (ṁS,b, ṁX,b,
ṁS,c and ṁX,c). Since there are only two equations, they can only be solved to obtain the value of two of

the unknowns. As equations (13) and (14) indicate, the key to solving these equations numerically is to

select ṁS,b and ṁX,b as the two unknowns. Then, in order to solve the equations numerically, one must

provide guesses for the two unknowns and code that will be given values for ṁS,b and ṁX,b and uses them

to evaluate functions f3 and f4. Since the code will be given values for ṁS,b and ṁX,b, it can use those

values to solve the PFR design equations. Doing so will yield values for ṁS,c and ṁX,c, at which point

functions f3 and f4 can be evaluated. Therefore, it is possible to solve the mixing point design equations.

Solving the mixing point design equations as just described yields the values of . Those values can
be used to solve the PFR design equations one last time. This will yield the cell mass flow rate in stream

c. A mass balance at the stream split, along with the definition of the recycle ratio, then allows calculation

of the cell mass flow rate leaving the process, equation (15). The cell mass concentration can then be
found to equal 0.0163 g cm-3 using equation (16).

!mX ,c = !mX ,d + !mX ,r = !mX ,d 1+ RR() ⇒ !mX ,d =

!mX ,c

1+ RR() (15)

X[]d =

!mX ,d
!Vd

 (16)

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 3

Calculation Details Using MATLAB
Two MATLAB functions were written to perform the calculations needed to solve this problem. The

first, Example_31_1_pfr, takes the inlet mass flow rates of S and X and the inlet volumetric flow rate as
arguments and solves the PFR design equations, returning the outlet mass flow rates of S and X. The

second MATLAB function, Example_31_1, solves the mixing point material balances, using the first

function, then calls the first function using the results to find the mass flow rates of S and X in stream c,

and finally uses equations (15) and (16) to compute the cell mass concentration in stream d.

MATLAB function for modeling the PFR. The PFR design equations are initial value ODEs.

Supplemental Unit S5 provides template files that can be used to solve them. In this problem, the final
value of the independent variable is provided, so the appropriate template file is SolvIVDifI.m. Before that

file can be used, you must make four required modifications.
To begin, I made a copy of the template file and saved it as Example_31_1_pfr.m; a copy of that file

accompanies this solution. Since the function name must match the filename, I changed the name of the
function to Example_31_1_pfr. At the same time, I changed the function declaration so that the inlet mass

flow rates of S and X and the inlet volumetric flow rate were passed to the function as arguments and so
that the outlet mass flow rates of S and X were returned. The template file begins with a long set of

comments describing what it does and how to use it; I replaced these comments with a brief comment
stating the purpose of the modified version. None of these modifications were required.

The first required modification involves entering all the known quantities from the problem
statement along with constants that will be needed (from handbooks or other reference sources). As

these are entered, they should be converted to a consistent set of units. In this function, I only entered the
constants required for solving the PFR design equations as shown in Listing 1.

Listing 1. Non-required modifications and entry of known constants.

The second required modification involves entering the code to evaluate functions f1 and f2 in

equations (9) and (10). This takes place in the internal function, odeqns, where values of the

independent variable are passed in as the scalar, t, and values of the dependent variables are passed in

in the vector, z. Thus, it is necessary to map the dependent variables used in the problem statement (ṁS

and ṁX) to the vector z; the corresponding derivatives are mapped to a vector dzdt. I find it useful at the

start of the internal function that will evaluate the derivatives, to define local variables with the names

% Modified version of the AFCoKaRE MATLAB template file SolvIVDifI.m used
% to model the PFR in Example 31.1 of "A First Course on Kinetics and
% Reaction Engineering."
%
function [mSout,mXout] = Example_31_1_pfr(mSin,mXin,VFRin)
 % Known quantities and constants (in consistent units)
 V = 4000.0; % cc
 k1 = 0.034; % /min
 k2 = 0.001; % g/cc

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 4

used in the problem statement. This modification is not required, but in my opinion, it makes the code
more readable and easier to debug. In addition, the list of variables here serves as a reminder of the

mapping of the problem statement variables to the vector z. Given the values of the independent and

dependent variables, the mass concentrations of S and X can first be calculated, and then the rate can be

calculated using equations (11), (12) and (1), respectively. Following that, the functions f1 and f2 in

equations (9) and (10) can be evaluated, saving the results in the vector dzdt. These modifications are

shown in Listing 2.

Listing 2. Internal function odeqns after required modifications have been made.

The third required modification involves providing the initial values of the independent and

dependent variables and the final value of the independent variable. The independent variable is the

cumulative reactor volume, and its initial and final values are entered as t0 and tf, respectively. The

initial values of the dependent variables are entered as a vector named z0, and they must use the same

mapping as was used previously for z. Here the necessary initial values of the mass flow rates are

passed into the main function as arguments. The results of performing this modification are shown in
Listing 3.

Listing 3. Specification of the initial values.

 % Function that evaluates the ODEs
 function dzdt = odeqns(t,z)
 % t is the value of the independent variable
 % z is a vector containing the values of the dependent variables
 mS = z(1);
 mX = z(2);
 CS = mS/VFRin;
 CX = mX/VFRin;
 rate = k1*CS*CX/(k2 + CS);
 dzdt = [
 -2.2*rate;
 rate;
];
 end % of internal function odeqns

 % Initial and final values
 t0 = 0;
 z0 = [
 mSin;
 mXin;
];
 tf = V;

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 5

The final required modification is to use the results from solving the ODEs to calculate whatever the
problem requested. In this case, all that needs to be done is to set the values of the outlet mass flow rates

so that they will be returned by the function. This is shown in Listing 4.

Listing 4. Final modification where the return variables are set to the proper values.

MATLAB function for solving the mixing point balances and evaluating the recycle PFR. The

mixing point design equations must be solved in order to analyze the PFR. The mixing point design
equations are non-differential, non-linear equations. Supplemental Unit S2 describes how to solve such

equations numerically using MATLAB, and it provides a template file named SolvNonDif.m for doing so.
That template file was used as the starting point here. Before it can be used, SolvNonDif.m must be

modified in four places, each indicated by a comment that begins “% EDIT HERE”.
In addition to those required modifications, I recommend that you work with a copy of the file that

has been given a more meaningful name. In this case, I made a copy of the file and saved it as
Example_31_1.m; a copy of the final version of that file accompanies this solution. Since the function

name must match the filename, I changed the name of the function to Example_31_1. At the same time,
knowing that I won’t need to use the results from these calculations in subsequent calculations, I changed

the function so that it does not return any values. The template file begins with a long set of comments
describing what it does and how to use it; I replaced these comments with a brief comment stating the

purpose of the modified version. None of these modifications were required. The first required
modification is to enter the values of all universal and problem specific constants, converting them to a

consistent set of units as they are entered. Here I only entered the constants needed for solving the
mixing point design equations as can be seen in Listing 5.

The next required modification is to provide code that evaluates the functions f3 and f4 in equations

(13) and (14). At this point, you need to decide which of the unknowns in the equations being solved is

going to be represented as z1, which as z2, and so on. I recommend actually defining variables with

names similar to those used in your solution and setting them equal to the corresponding zi. Doing so will

make your code a little less efficient, but it may also reduce the chances of coding errors. Listing 6 shows

how this was done in Example_31_1.m and how code to evaluate the functions was entered so that the

vector named f contains the value of f3 as its first element and the value of f4 as its second element.

Notice that before the functions could be evaluated, it was necessary to call the Example_31_1_pfr to

solve the PFR design equations and obtain the values of ṁS,c and ṁX,c.

 % Set the return values
 mSout = z(1);
 mXout = z(2);

end % of Example_31_1_pfr.m

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 6

Listing 5. Initial modifications to the template file SolvNonDif.m.

Listing 6. Modifications to evaluate the functions being solved.

The third required modification is where guesses for the unknowns in the mixing point design

equations are provided. It can be tricky to provide guesses that lead to a converged solution, and you
may need to try several times in order to find guesses that work. The guesses are entered in the array

named z_guess. Listing 7 shows the guesses I used. Since I knew the mass flow of S in stream a, I

multiplied that by one plus the recycle ratio to get a crude inlet mass flow into the reactor, and then
multiplied the result by 0.5 to account for the expected lower concentration of S in the recycle stream. For

X, I multiplied the inlet flow of S times the recycle ratio and took 0.2 of the result as my guess.

Listing 7. Modification where guesses are provided for the unknowns.

% Modified version of the AFCoKaRE MATLAB template file SolvNonDif.m used
% to model the recycle PFR in Example 31.1 of "A First Course on Kinetics
% and Reaction Engineering."
%
function Example_31_1
 % Known quantities and constants (in consistent units)
 CSa = 0.04; % g/cc
 CXa = 0.; % g/cc
 VFRa = 60.; % cc/min
 RR = 0.2;
 mSa = VFRa*CSa;
 mXa = VFRa*CXa;
 VFRd = VFRa;
 VFRr = RR*VFRd;
 VFRc = VFRr + VFRd;
 VFRb = VFRc;

 % Function that evaluates the equations
 function f = evalEqns(z)
 mSb = z(1);
 mXb = z(2);
 [mSc,mXc] = Example_31_1_pfr(mSb,mXb,VFRb);
 f = [
 mSa + RR*mSc/(1+RR) - mSb;
 mXa + RR*mXc/(1+RR) - mXb;
];
 end % of internal function evalEqns

 % guesses for the solution
 z_guess = [
 (1+RR)*mSa*0.5
 RR*mSa*0.2
];

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 7

The final modification is where any additional calculations are performed after the non-linear

equations have been solved. In this problem, solving the mixing point design equations yields ṁS,b and

ṁX,b, the PFR inlet mass flow rates. Therefore, after the mixing point design equations had been solved,

the MATLAB function for solving the PFR design equations was called, using those values. Doing so

returns the PFR outlet mass flow rates of S and X. At that point, equations (15) and (16) could be used to
calculate the requested final mass concentration of cell mass. The code is shown in Listing 8.

Listing 8. Final modification where the process cell mass concentration is calculated.

At this point, Example_31_1.m can be executed by by typing Example_31_1 at the MATLAB

command prompt. The resulting output is shown in Listing 9. It is important to check that the non-linear
equation solver converged. In this case it did, and therefore, the results produced by the calculations can

be accepted.

 % Solve the PFR design equations
 mSb = z(1);
 mXb = z(2);
 [mSc,mXc] = Example_31_1_pfr(mSb,mXb,VFRb);
 % Calculate the outlet cell mass concentration
 mXd = mXc/(1+RR);
 CXd = mXd/VFRd

end % of Example_31_1.m

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 8

Listing 9. Output from the execution of Example_31_1.

>> Example_31_1

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
 2.4504
 0.1953

The corresponding values of the functions being solved are as follows:

f =
 1.0e-07 *

 0.3138
 -0.1426

CXd =
 0.0163

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 31.1 9

