
A First Course on Kinetics and Reaction Engineering

Example 29.2

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit. It illustrates the analysis of a simple series reactor network with parallel reactions taking place.

Problem Statement
A 200 L adiabatic CSTR and a 200 L adiabatic PFR are going to be connected in series and used to 

convert A according to irreversible reactions (1) and (2), where D is the desired product and U is an 

undesired, low-value byproduct. The feed consists of an aqueous stream containing 2.5 mol A L-1, flowing 
at a rate of 100 L min-1 at 38 °C. The liquid density may be assumed to be constant. The heat of reaction 

(1) is -21,500 cal mol-1 and that of reaction (2) is -24,000 cal mol-1. The heat capacity of the solution is 
constant and equal to 1.0 cal cm-3 K-1. The rate expressions for reactions (1) and (2) are given in 

equations (3), and (4), respectively. Compare the overall conversion of A and selectivity (mol D per mol U) 
for the configuration with the CSTR first to those with the PFR first.

A → D (1)

A → U (2)

r1 = 3.40 ×105  min−1( )exp −9000 cal mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭
CA  (3)

r2 = 1.67 ×1014  L mol−1  min−1( )exp −23,000 cal mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭
CA

2  (4)

Problem Analysis
In this problem the rate expressions for the reactions are known and we are asked about reactor 

properties, so this is a reaction engineering problem. It involves both a CSTR and a PFR. Their steady 

state operation will be analyzed since the problem makes no mention of any changes that would cause 
transient behavior. For both reactors we will write mole balances on every reactant and product (in this 

case A, D and U) and an energy balance. The problem does not provide sufficient information to include a 
mechanical energy balance for the PFR, so we will assume negligible pressure drop. The reactors 

operate adiabatically, and for the PFR, the reactor diameter and length are not specified, therefore, we’ll 
need to rewrite the PFR balance equations so that the cumulative volume is the independent variable 

instead of the axial position. In both cases, we will solve the design equations and then use the results to 
answer the questions posed.

A qualitative analysis shows this to be an interesting problem. The reactions are exothermic and the 
kinetics are regular. Hence for adiabatic operation the temperature will increase as the reaction proceeds 

while the concentration of reactant will decrease. As seen in past problems, this typically leads to a rate 
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that initially increases, reaches a maximum value and then decreases. In addition, we have parallel 

reactions taking place. The instantaneous selectivity parameter, SD/U, is the ratio of the desired to 

undesired reaction rates, as given in equation (5), which shows that the selectivity for the desired product 

increases as the concentration of the reactant, A, decreases. At the same time, since E2 - E1 is a positive 
number, the selectivity decreases as the temperature increases. Clearly there will be trade-offs inherent in 

the system. Having the CSTR last will mean high temperature and low concentration which oppose each 
other with respect to selectivity and conversion. Having the CSTR first might improve conversion, but the 

opposing effects of higher reactant concentration and lower temperature make it impossible to 
qualitatively assess how the selectivity will be affected. It will simply be necessary to simulate both 

systems quantitatively in order to find out.

  

SD/U =
rD

rU

=
k0,1 exp

−E1

RT
⎡

⎣
⎢

⎤

⎦
⎥CA

k0,2 exp
−E2

RT
⎡

⎣
⎢

⎤

⎦
⎥CA

2

=
k0,1

k0,2

exp
E2 − E1

RT
⎡

⎣
⎢

⎤

⎦
⎥

1
CA

 (5)

Problem Solution
Before analyzing the two specified configurations, we can write the design equations for the two 

reactors since they will be the same in either configuration. The general steady state CSTR mole and 

energy balance design equations are given in equations (6) and (7). There are two reactions taking place, 

so the summation over the reactions in both equations will expand to give two terms. The reactors 
operate adiabatically and perform negligible work through moving shafts and boundaries, so the heat 
input and work terms will equal zero. Finally, we are given a volume-specific heat capacity for the fluid as 

a whole, so the summation over the individual heat capacities of the species can be replaced by a single 

sensible heat term. With those simplifications, steady state CSTR mole balances for A, D and U and a 
steady state CSTR energy balance will take the forms given in equations (8) through (11), where the 
subscripts “in” and “out” designate the inlet and outlet flow streams.

   

0 = !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑  (6)

 

0 = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ − !Q + !W  (7)

   
0 = !nA,in − !nA,out −V r1,out + r2,out( )  (8)

   
0 = !nD ,in − !nD ,out +Vr1,out  (9)

   
0 = !nU ,in − !nU ,out +Vr2,out  (10)
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 0 =
!Vin "Cp Tout −Tin( ) +V r1,outΔH1 Tout( ) + r2,outΔH2 Tout( )( )  (11)

The problem statement gives values for V (200 L),   !V  (100 L min-1, which is constant since the fluid 

density is constant), ΔH1 (-21,500 cal mol-1, independent of T), ΔH2 (-24,000 cal mol-1, independent of T) 

and  
!Cp  (1.0 cal cm-3 K-1), and, of course, the ideal gas constant is known. The remaining quantities, (inlet 

and outlet molar flow rate of each species and inlet and outlet temperature) are either unknown, or their 

value depends upon whether the CSTR precedes the PFR or vice versa.

Similarly, the general steady state PFR mole balance is given by equation (12), and the general 
steady state PFR energy balance, by equation (13). As noted in the problem analysis and described in 

Unit 26, these equations will need to be re-written to use the cumulative volume as the dependent 

variable. That is, equation (14) needs to be used to replace dz in equations (12) and (13). As was the 

case for the CSTR, there are two reactions taking place, so the summation over the reactions in both 

equations will expand to give two terms. The PFR also operates adiabatically, so the heat input term 
equals zero, and again, we are given a volume-specific heat capacity for the fluid as a whole, so the 

summation over the individual heat capacities of the species can be replace by a single sensible heat 
term. Implementing these changes leads to the PFR design equations given by equations (15) through 

(18), where again the subscripts “in” and “out” designate the inlet and outlet flow streams.

 

d !ni
dz

= πD2

4
ν i, jrj

j=all
reactions

∑  (12)

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dT
dz

+ πD2

4
rjΔH j( )

j=all
reactions

∑  (13)

dV = πD2

4
dz  (14)

 

d !nA
dV

= −r1 − r2;     !nA 0( ) = !nA,in  (15)

 

d !nD
dV

= r1;     !nD 0( ) = !nD,in  (16)

 

d !nU
dV

= r2;     !nU 0( ) = !nU ,in  (17)

 

dT
dV

= −
r1ΔH1 T( ) + r2ΔH2 T( )

!V "Cp

;      T 0( ) = Tin  (18)
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Case 1, CSTR followed by PFR. Figure 1 shows a schematic representation of this case with the 
three flow streams labeled. Thus, in the CSTR design equations, “in” is equivalent to “a” and “out” is 

equivalent to “b”. Similarly, in the PFR design equations, “in” is equivalent to “b” and “out” is equivalent to 
“c”. Making these substitutions leads to the design equations given in equations (19) through (26).

                                                               
Figure 1. Schematic representation of the case with the CSTR followed by the PFR.

   
0 = f1 !nA,b , !nD ,b , !nU ,b ,Tb( ) = !nA,b − !nA,a −Vr1,b  (19)

   
0 = f2 !nA,b , !nD ,b , !nU ,b ,Tb( ) = !nD ,b − !nD ,a +V r1,b − r2,b( )  (20)

   
0 = f3 !nA,b , !nD ,b , !nU ,b ,Tb( ) = !nU ,b − !nU ,a +Vr2,b  (21)

 0 = f4 !nA,1, !nD,1, !nU ,1,T1( ) = !V0 "Cp T1 −T0( ) +V r1ΔH1 T1( ) + r2ΔH2 T1( )( )  (22)

 

d !nA
dV

= f5 V , !nA , !nD , !nU ,T( ) = −r1;     !nA 0( ) = !nA,b  (23)

 

d !nD
dV

= f6 V , !nA , !nD , !nU ,T( ) = r1 − r2;     !nD 0( ) = !nD,b  (24)

 

d !nU
dV

= f7 V , !nA , !nD , !nU ,T( ) = r2;     !nU 0( ) = !nU ,b  (25)

 

dT
dV

= f8 V , !nA , !nD , !nU ,T( ) = −
r1ΔH1 T( ) + r2ΔH2 T( )

!V "Cp

;      T 0( ) = Tb  (26)

The CSTR design equations, (19) through (22), are non-linear, non-differential equations. In order 

to solve them numerically one must (a) identify a set of unknown quantities, equal in number to the 

number of equations, (b) provide a guess for the value of each unknown, and (c) provide code that when 

given values for the unknowns, evaluates the equations. You can see in the equations above that I have 

identified ṅA,b, ṅD,b, ṅU,b and Tb as the unknowns, and I can guess a value for each. The code I provide will  

need to evaluate the functions f1 through f4, given values for ṅA,b, ṅD,b, ṅU,b and Tb. To do that, I’ll need to 

a b cR1
R2
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be able to provide or calculate a value for every other quantity that appears in those functions. We’ve 

already seen that V,   
!Va = !Vb = !Vc , ΔH1, ΔH2 and  

!Cp  are known constants. The inlet molar flow rate of A 

is also a constant that can be calculated from the inlet volumetric flow rate and the inlet concentration of 

A (CA,a = 1.3 mol L-1) given in the problem statement using equation (27). The inlet molar flow rates of D 

and U are zero since the problem does not mention that any D or U are present in the feed.

 !nA,a = CA,a
!Va  (27)

The only other quantities, apart from the unknowns, appearing in functions f1 through f4 are the 

rates, r1,b and r2,b. The rates can be calculated using equations (3) and (4). In order to do so, however, 

the concentration of A in stream b first must be computed using equation (28). The rate coefficients in 

equations (3) and (4) will be evaluated at Tb.

 
CA,b =

!nA,b
!Vb

=
!nA,b
!Va

 (28)

With that information, code can be written to evaluate the functions f1 through f4, given values for 

ṅA,b, ṅD,b, ṅU,b and Tb, and the design equations (8) through (10) can be solved numerically. Upon doing 

so, one finds ṅA,b = 60.7 mol min-1, ṅD,b = 113.5 mol min-1, ṅU,b = 75.7 mol min-1 and Tb = 354 K.

The PFR design equations, (23) through (26), are initial value ODEs because the value of each of 

the 4 dependent variables is known at the same value (V = 0) of the independent variable. They can be 

solved numerically to obtain the values of all of the variables at some other point of interest, here the 
outlet. To do so you will need to provide (a) the initial values of the independent and dependent variables, 

(b) the final value of either the independent variable or one of the dependent variables at the outlet and 

(c) code that, given values for the independent and dependent variables, evaluates the functions f5 
through f8 in equations (23) through (26), where the ODEs have been written in the standard form with 

one derivative on the left of each equals sign and a function of the independent and dependent variables 

on the right.
Looking at the schematic diagram, the initial values of the molar flow rates and the temperature (at 

V = 0) are the values for stream b, which were just calculated. The final value of the independent variable 

(V = 200 L) is known. In order to evaluate the functions, f5 through f8, we’ll need to calculate every 

quantity that appears in them except for the independent and dependent variables (V, ṅA, ṅD, ṅU and T), 

which the code will be given. Looking at the functions, we see that they contain the same quantities that  
the CSTR equations contained, and all of those except the rates are known constants. The rates are 

again calculated using equations (3) and (4). To do so, it is necessary to first calculate the concentration 
of A. In this case, that concentration will be calculated using the given values for the independent and 

dependent variables as in equation (29). The rate coefficients in equations (3) and (4) will be evaluated at 

the given value of T.
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CA =

!nA
!Vb
=
!nA
!Va

 (29)

That is all the information needed to numerically solve the PFR design equations to determine the 

molar flow rates and the temperature at the outlet of the PFR. Doing so, one finds that ṅA,c = 2.2 mol 

min-1, ṅD,c = 154.5 mol min-1, ṅU,c = 93.3 mol min-1 and Tc = 367 K. Knowing those quantities, the overall 

conversion and the selectivity can be calculated using equations (30) and (31) to find the conversion is 

99.1% and the selectivity is 1.66 mol D per mol U.

 
fA =
!nA,a − !nA,c
!nA,a

 (30)

 
SD

U
=
!nD,c
!nU ,c

 (31)

Case 2, PFR followed by CSTR. Figure 2 presents a schematic representation of this 
configuration. The analysis of this configuration is nearly the same as the first configuration, so a detailed 

description will not be presented.  The differences are that first, the PFR equations are written using 

stream a as the initial values, and they are solved first to find the molar flow rates and temperature for 

stream b: ṅA,b = 96.0 mol min-1, ṅD,b, = 110.5 mol min-1, ṅU,b = 43.5 mol min-1, and Tb = 345 K. The CSTR 

design equations can then be solved using the molar flows and temperature for stream b as the “in” 

values and the molar flows and temperature for stream c as the “out” values. Since the values for stream 

b are known upon solving the PFR design equations, the CSTR design equations can be solved to find 

the unknown molar flows and temperature for stream c: ṅA,c = 21.7 mol min-1, ṅD,c, = 164.6 mol min-1, ṅU,c 

= 63.7 mol min-1, and Tc = 362 K. These results correspond to a conversion of 91.3% and a selectivity of 

2.59 mol D per mol U.

                                                                                   
Figure 2. Schematic representation of the case with the PFR followed by the CSTR.

As noted in the problem analysis, this particular reaction/reactor combination involved several 
trade-offs that made it impossible to qualitatively predict the better configuration. The results show that 

while placing the CSTR second did adversely affect the conversion (91.3% versus 99.1%), it had a much 
larger impact upon the selectivity (2.59 vs. 1.66 mol D per mol U).

a b cR2
R1
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Calculation Details Using MATLAB
In this problem, it was possible to solve the design equations for each of the reactors individually. 

Therefore I elected to write a MATLAB function for solving the CSTR design equations and a second 
MATLAB function for solving the PFR design equations. In each of these functions, the inlet stream 

properties were passed into the function as arguments, and after numerically solving the design 
equations, the outlet stream properties were returned. Once these functions were written, a third MATLAB 

function was written to solve each of the two cases solving the reactor design equations with the 
appropriate inlet stream properties for each case. This approach reduces the amount of code duplication, 

but providing guesses for the solution of the CSTR equations can become challenging since the CSTRs 
operate at very different feed conditions in the two configurations. It wasn’t necessary here, but one 

solution if this becomes a problem, is to pass both the inlet stream properties and a guess for the outlet 
stream properties as arguments to the function that solves the CSTR design equations. In that way, 

different guesses can be used depending upon the feed to the reactor.
MATLAB function for modeling the CSTR. The CSTR design equations, (8) through (11), are 

non-linear, non-differential equations. Supplemental Unit S2 describes how to solve sets of non-
differential equations numerically using MATLAB, and it provides a template file named SolvNonDif.m for 

doing so. Before it can be used to solve a problem, that template file must be modified in four places, 
each indicated by a comment that begins “% EDIT HERE”. In addition to those required modifications I 

made a few additional modifications that will be described here along with the required modifications.
I recommend that you work with a copy of the file that has been given a more meaningful name; I 

made a copy of SolvNonDif.m and saved it as Example_29_2_cstr.m. Since the function name must 
match the filename, I changed the name accordingly. At the same time, I changed the function declaration 

to indicate that the inlet molar flow rates of A, D and U and the inlet temperature would be passed into the 
function as arguments. I also changed the declaration to indicate that the outlet molar flow rates of A, D 

and U and the outlet temperature would be returned. (These items could have been passed as a single 
inlet vector and an outlet vector, but for clarity I used individual variables.) The template file begins with a 

long set of comments describing what it does and how to use it; I replaced these comments with a brief 
comment stating the purpose of the modified version. None of these modifications were required.

The first required modification is to enter the values of all universal and problem-specific constants 
at the point indicated. At the same time these are entered, they should be converted to a consistent set of 

units. I also entered the ideal gas constant. Listing 1 shows the relevant part of Example_29_2_cstr.m.
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Listing 1. Changes to the first part of SolvNonDif.m for use in modeling the CSTR.

The second required modification involves entering the code to evaluate the right hand sides of 

equations (7) through (10) which have been written in the form f(unknowns) = 0. This occurs within an 

internal function named evalEqns where the unknowns and the equations are entered as vector 

quantities named z and f, respectively. Thus, it is necessary to map the unknowns in this problem 

solution (ṅA,out, ṅD,out, ṅU,out and Tout) to a vector z, and to return the values of the functions in the vector f. 

I find it useful at the start of the internal function that will evaluate the functions, to define local variables 

with the names used in the problem statement. This modification is not required, but in my opinion, it 
makes the code more readable and easier to debug. In addition, the list of variables here serves as a 

reminder of the mapping of the problem solution variables to the vector z.

Recall from the solution that in order to evaluate the functions it is first necessary to calculate the 

rates using equations (3) and (4). Before than can be done, it is first necessary to calculate the 
concentration of A and then evaluate the rate, all at the outlet conditions. Once the rate has been 

calculated the functions can next be evaluated. The code containing all these modifications is shown in 
Listing 2.

% Modified version of the AFCoKaRE MATLAB Template file SolvNonDif.m used
% in the solution of Example29.2 of "A First Course on Kinetics and
% Reaction Engineering."
%
function [nAout,nDout,nUout,Tout]=Example_29_2_cstr(nAin, nDin, nUin, Tin)
    % Known quantities and constants
    V = 200.0; % L
    VFR = 100.0; % L/min
    dH1 = -21500.0; % cal/mol
    dH2 = -24000.0; % cal/mol
    cP = 1.0*1000; % cal/L/K
    k01 = 3.4E5; % /min
    k02 = 1.67E14; % /min
    E1 = 9000.0; % cal/mol
    E2 = 23000.0; % cal/mol
    % Gas constant
    R = 1.987; % cal/mol/K
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Listing 2. Modified version of the internal function evalEqns in the function for modeling the CSTR.

The third required modification is where guesses for the unknowns are provided. The guesses are 

entered in the array named z_guess. They must be entered using the same mapping of the unknowns to 

the vector z as was used in the internal function evalEqns. The previous modification, where variables 

with more meaningful names were defined, serves as a key to remind you which variable is z(1), which 

is z(2), and so on. Listing 3 shows the guesses I used; there is nothing special about them, they are just 

guesses.

Listing 3. Guesses for the values of the unknowns.

The final required modification is to calculate any additional quantities that the problem asked for. 

Since this function returns the outlet molar flows and the outlet temperature as individual values, and not 
as a vector, all I had to do here was to extract those individual values from the solution vector, z as shown 

in Listing 4. If you look carefully at Listing 4, you’ll see that I also increased the maximum number of 

function evaluations used by the equation solver, fsolve. If I hadn’t done this, the routine would not 

have converged to a solution in both reactor network configurations; different guesses would have been 
needed. In this case, allowing for significantly more function evaluations allowed the method to find 

solutions for both configurations using the same guess. A change like this won’t always work, but in this 
case it did.

    % Function that evaluates the equations
    function f = evalEqns(z)
        nA = z(1);
        nD = z(2);
        nU = z(3);
        T = z(4);
        CA = nA/VFR;
        r1 = k01*exp(-E1/R/T)*CA;
        r2 = k02*exp(-E2/R/T)*CA^2;
        f = [
            nAin - nA - V*(r1 + r2)
            nDin - nD + V*r1
            nUin - nU + V*r2
            VFR*cP*(T - Tin) + V*(r1*dH1 + r2*dH2)
        ];
    end % of internal function evalEqns

    % guesses for the solution
    z_guess = [
        0.5*nAin
        nDin + 0.5*nAin
        nUin + 0.01*nAin
        Tin + 10
    ];
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Listing 4. Final modification to the function for modeling the CSTR.

MATLAB function for modeling the PFR. The PFR design equations, (15) through (18), are 

coupled ordinary differential equations (ODEs). Supplemental Unit S5 provides template files that can be 
used to solve such equations. In this problem, the equations are initial value ODEs and the final value of 

the independent variable is provided, so the appropriate template file is SolvIVDifI.m. Before that file can 
be used, you must make four required modifications. Here I will also describe a few non-required 

modifications that you might want to consider when solving problems of this type.
To begin, I made a copy of the template file and saved it as Example_29_2_pfr.m; a copy of that file 

accompanies this solution. As required, I changed the function name to match the filename. I also 
changed the function declaration to indicate that the inlet molar flow rates of A, D and U and the inlet 

temperature would be passed into the function as arguments and the outlet molar flow rates of A, D and U 
and the outlet temperature would be returned. I replaced the long introductory comment with a brief 

comment stating the purpose of the modified version. None of these modifications were required. The first 
required modification involves entering all the known quantities from the problem statement along with 

universal constants that will be needed (from handbooks or other reference sources). As these were 
entered, they were converted to a consistent set of units. The result of making all these modifications is 

shown in Listing 5.

Listing 5. Initial comment, function declaration and known constants after modification of SolvIVDifI.m

    % Solve the set of algebraic equations
    options = optimoptions(@fsolve,'MaxFunEvals',2000);
    z = fsolve(@evalEqns, z_guess, options);
    display('The values of the functions being solved are as follows:');
    f = evalEqns(z)
    nAout = z(1);
    nDout = z(2);
    nUout = z(3);
    Tout = z(4);

% Modified version of the AFCoKaRE MATLAB Template file SolvIVDifI.m used
% in the solution of Example 29.2 of "A First Course on Kinetics and
% Reaction Engineering."
%
function [nAout,nDout,nUout,Tout] = Example_29_2_pfr(nAin,nDin,nUin,Tin)
    % Known quantities and constants
    V = 200.0; % L
    VFR = 100.0; % L/min
    dH1 = -21500.0; % cal/mol
    dH2 = -24000.0; % cal/mol
    cP = 1.0*1000; % cal/L/K
    k01 = 3.4E5; % /min
    k02 = 1.67E14; % /min
    E1 = 9000.0; % cal/mol
    E2 = 23000.0; % cal/mol
    % Gas constant
    R = 1.987; % cal/mol/K
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The second required modification involves entering code that, given values for the independent and 

dependent variables, evaluates the derivatives when the ODEs are written in the standard form as in 

equations (15) through (18). Notice that the equations are provided as a vector quantity. Thus, it is 

necessary to map the dependent variables used in the problem statement (ṅA, ṅD, ṅU, T) to a vector z, 

and the corresponding derivatives are mapped to a vector dzdt. I find it useful at the start of the internal 

function that will evaluate the derivatives (odeqns), to define local variables with the names used in the 

problem statement. This modification is not required, but in my opinion, it makes the code more readable 

and easier to debug. In addition, the resulting list of variables serves as a reminder of the mapping of the 

problem statement variables to the vector z. The required code first calculates the reactant concentration 

according to equations (29). Following that, the rates are calculated (at the outlet temperature) using 

equations (3) and (4). Finally, equations (15) through (18) are evaluated, saving the results in the vector 

dzdt using the same mapping that was used to map the dependent variables to the vector z. The 

resulting code is shown in Listing 6.

Listing 6. Results of the second required modification to the code for modeling the PFR.

The third required modification involves providing the initial values of the independent (V = 0 L) and 

dependent variables (passed in as arguments) and the final value of the independent variable (V = 200 

L). The results of performing this modification are shown in Listing 7.

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nD = z(2);
        nU = z(3);
        T = z(4);
        CA = nA/VFR;
        r1 = k01*exp(-E1/R/T)*CA;
        r2 = k02*exp(-E2/R/T)*CA^2;
        dzdt = [
            -r1 - r2
            r1
            r2
            -(r1*dH1 + r2*dH2)/VFR/cP
        ];
    end % of internal function odeqns
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Listing 7. Results of the third required modification.

The fourth and final required modification is to calculate any additional quantities that the problem 

asked for. Since this function returns the outlet molar flows and the outlet temperature as individual 
values, and not as a vector, all I had to do here was to extract those individual values from the solution 

vector, z as shown in Listing 8.

Listing 8. Results of the fourth required modification.

MATLAB function for analyzing the reactor networks. Once the functions for modeling the 
CSTR and the PFR were available, a third MATLAB function, named Example_29_2, was created to 

analyze the two reactor networks. That function is shown in Listing 9. The function begins by entering or 
calculating the molar flow rates and the temperature of the feed stream. For the first reactor network, 

those quantities are passed to the function that models the CSTR, while for the second network they are 
passed to the function that models the PFR. The molar flow rates and temperature for the outlet stream 

from the first reactor are returned. Those returned values are then simply passed to the function that 
evaluates the second reactor as the inlet values, and the outlet values are returned. Once the outlet from 

the second reactor has been obtained, the conversion and selectivity are calculated according to 
equations (30) and (31). Listing 9 shows the code. That code can then be executed by simply typing 

Example_29_2 at the MATLAB command prompt. Doing so produces the output shown in Listings 10 and 
11.

    % Initial and final values
    t0 = 0;
    z0 = [
        nAin
        nDin
        nUin
        Tin
    ];
    tf = V;

    % Solve the ODEs
    [t,zz] = ode45(@odeqns,[t0 tf],z0);
 
    % Return the values of the independent and dependent variables when the
    % integration stopping condition was satisfied
    last_value = length(t);
    t_f = t(last_value);
    z = zz(last_value,:);
    nAout = z(1);
    nDout = z(2);
    nUout = z(3);
    Tout = z(4);
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Listing 9. MATLAB function for evaluating the two reactor networks.

% MATLAB file used in the solution of Example_29_2 of "A First Course on
% Kinetics and Reaction Engineering."
%
function Example_29_2
    % Known Constants
    CAa = 2.5; % mol/L
    VFR = 100.0; % L/min
    Ta = 38.0 + 273.15; % K
    nDa = 0.0; % mol/min
    nUa = 0.0; % mol/min
    % Calculated constants
    nAa = CAa*VFR;
    
    % CSTR first
    display('Case with CSTR first');
    % calculate the CSTR outlet values
    [nAb, nDb, nUb, Tb] = Example_29_2_cstr(nAa,nDa,nUa,Ta);
    % calculate the PFR outlet values
    [nAc, nDc, nUc, Tc] = Example_29_2_pfr(nAb, nDb, nUb, Tb);
    % calculate and report overall conversion and yield
    percent_conversion = 100*(nAa - nAc)/nAa
    sel_D_per_U = nDc/nUc
 
    % PFR first
    display('Case with PFR first');
    % calculate the PFR outlet values
    [nAb, nDb, nUb, Tb] = Example_29_2_pfr(nAa,nDa,nUa,Ta);
    % calculate the CSTR outlet values
    [nAc, nDc, nUc, Tc] = Example_29_2_cstr(nAb, nDb, nUb, Tb);
    % calculate overall conversion and yield
    percent_conversion = 100*(nAa - nAc)/nAa
    sel_D_per_U = nDc/nUc
 
end % of Example_29_2.m
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Listing 10. First half of the output from the execution of Example_29_2.

>> Example_29_2
Case with CSTR first

Equation solved, fsolve stalled.

fsolve stopped because the relative size of the current step is less than the
default value of the step size tolerance squared and the vector of function 
values
is near zero as measured by the default value of the function tolerance.

<stopping criteria details>

The values of the functions being solved are as follows:

f =
   1.0e-08 *

   -0.0000
    0.0000
   -0.0000
   -0.2794

percent_conversion =
   99.1236

sel_D_per_U =
    1.6571
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Listing 10. Second half of the output from the execution of Example_29_2.

Case with PFR first

Equation solved, fsolve stalled.

fsolve stopped because the relative size of the current step is less than the
default value of the step size tolerance squared and the vector of function 
values
is near zero as measured by the default value of the function tolerance.

<stopping criteria details>

The values of the functions being solved are as follows:

f =
   1.0e-09 *

   -0.0001
    0.0000
    0.0000
   -0.2328

percent_conversion =
   91.3044

sel_D_per_U =
    2.5855
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