
A First Course on Kinetics and Reaction Engineering

Example 27.2

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit. This example illustrates the formulation of the transient PFR design equations in a situation where 
the reactor cannot be analyzed using the steady state design equations.

Problem Statement
Recall the reactor from Example 1 of this unit. It is a perfectly insulated tubular reactor with a 

diameter of 10 cm and a length of 5 m being fed an aqueous solution containing A and B at 
concentrations of 1.0 and 1.2 M, respectively. This feed stream is at a constant temperature of 30 °C and 

flows at 75 L min-1. Reagents A and B react according to reaction (1) with a rate of reaction that is 
accurately described by equation (2). The heat of reaction (1) is -10,700 cal mol-1 and may be assumed to 

be constant. The heat capacity of the solution and the density of the solution may be taken to be constant 
and equal to those of water (1.0 cal g-1 K-1 and 1.0 g cm-3). The pressure drop in the reactor is negligible. 

Suppose that this reactor has reached steady state when suddenly the inlet volumetric flow rate is 
doubled to 150 L min-1. Plot the molar flow rate of A and the temperature as a function of distance into the 

reactor 0.065 minutes after the feed was started, 0.131 minutes after the feed was started, 0.196 minutes 
after the feed was started and 0.262 minutes after the feed was started. (Note: the four times specified 

correspond to one-fourth of the space time, one-half of the space time, three fourths of the space time 
and the space time.)

A + B → Y + Z (1)
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Problem Analysis
The problem describes a change in the feed to a PFR which will result in transient operation. This is 

not a kinetics problem because the rate expression is known; it is a transient PFR reaction engineering 
problem. To solve the problem it will be necessary to construct an accurate mathematical model for the 

reactor. However, in contrast to the first example of this unit, the change that is made here does affect all 

of the fluid elements in the reactor, not just the ones entering after the change. Specifically, when the flow 
rate is increased, all of the fluid within the reactor begins to flow faster. As a consequence, the transient 
will not take the form of a front that propagates through the reactor. That means that this problem cannot 

be solved simply by solving the steady state design equations. Instead, the transient forms of the mole 

and energy balance equations will be needed.
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Problem Solution
The transient mole and energy balances were set up in Example 1 of this unit, so they are simply 

presented here as equations (3) through (7).
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In order to solve these, it is necessary to specify the initial and boundary conditions. This is where 
the present example differs from Example 1. In this problem, the reactor is initially operating at steady 

state. Therefore, the steady state design equations must first be solved to determine the molar flow rate 

of each species and the temperature as a function of z. This steady state is the same as the one analyzed 

in Example 3 of Unit 26, so the analysis will not be duplicated here. In the remainder of this solution, the 

subscript “old.ss” will be used to denote a steady state value when the reactor was operating at the 
steady state prior to the change in inlet flow rate.

The initial conditions we need to specify are the molar flow rates and the temperature, each as a 

function of z, at the time when the change in flow rate has just been made. The temperature is easy; at 

the instant just after the inlet volumetric flow rate is doubled, the temperature at each location in the 

reactor will equal the temperature corresponding to the old steady state. This leads to the initial condition 
given in equation (8). The initial conditions for the molar flow rates are a little trickier, because when the 

volumetric flow rate is doubled, that changes all the molar flow rates, as well. There are two ways to 

understand what the molar flow rates (at any axial position, z) will equal at the instant just after the inlet 

volumetric flow rate is doubled. One is to realize that doubling the volumetric flow rate will double each 

molar flow rate as well. Hence, the initial values of the molar flow rates will equal two times the old steady 
state values. Another way to understand this is to note that the instant the volumetric flow rate is changed, 

the concentration at any one point will not change, and therefore the new molar flow rate will equal the old 
steady state concentration times the new volumetric flow rate, denoted by a subscript “new”. The old 

steady state concentration is simply equal to the old steady state molar flow rate divided by the old steady 
state volumetric flow rate, leading to the initial conditions given in equations (9) through (12). Noting that 
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the ratio of the new to old volumetric flow rates is two, we see that indeed, the molar flow rates are equal 
to two times the old steady state values.

at t = 0, T(z) = Told.ss(z) for all z (8)

at t = 0, 
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We also need to specify a boundary condition for each dependent variable that applies for all times 

after the change. In this problem, we have information about the dependent variables at the reactor inlet 

after the change, so we will specify the boundary conditions at z = 0. In fact, the only things that change 

from the old steady state inlet conditions are the inlet molar flow rates of A and B (their concentration 

stays the same while the volumetric flow rate doubles to  
!Vnew ). Since there isn’t any Y or Z in the feed, 

their inlet flows remain equal to zero. The inlet temperature is also the same before and after the change. 

This leads to the boundary conditions given in equations (13) through (17).

at z = 0,  !nA = CA
0 !Vnew  for all t > 0 (13)

at z = 0,  !nB = CB
0 !Vnew for all t > 0 (14)

at z = 0, ṅY = 0 for all t > 0 (15)

at z = 0, ṅZ = 0 for all t > 0 (16)

at z = 0, T = 303.15 K for all t > 0 (17)

At this point the problem is set up for solution. In this course we will not ask students to solve 

equations of this type and we will not go into the details of solving them. Doing so would require 
discretization and application of finite differences or some equivalent approach. However, for illustrative 

purposes, the equations were solved numerically and will be presented here in order to show that while 
the transient still only lasts for one space time, it no longer takes the form of a front that propagates 

through the reactor. Figure 1 shows the profile of the molar flow rate of A along the reactor after 0.25, 0.5, 
0.75 and 1.0 space times have elapsed. You can see that after one space time, the reactor is at the new 

steady state. The figure also shows the original steady state as a black curve.
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Figure 1. Profiles of the molar flow rate of A computed one-fourth of a space time after the change (red), 
one-half of a space time after the change (green), three-fourths of a space time after the change (brown) 

and one space time after the change (blue); the original steady state profile is shown in black.

Calculation Details
The numerical solution of the transient design equations goes beyond the scope of this course and 

will not be presented here.
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