A First Course on Kinetics and Reaction Engineering Unit 27. Analysis of Transient Plug Flow Reactors

Definitions

discretization - dividing the range of a spatial variable, such as the axial position in a PFR, into some number of smaller intervals
discretization point - the value of a spatial variable, such as the axial position in a PFR, at the boundary between two discretization intervals
finite differences - approximations where a derivative is taken to equal the ratio of a finite change in the dependent variable (e. g. the change between two discretization points) to the change in the independent variable
front - a distinct change in the value of one or more variables at a single axial position; the axial position at which the change appears increases monotonically giving the appearance that the change is moving along the length of the reactor
break through - the point in time when a front reaches the outlet of the reactor

Nomenclature

$\Delta H_{j} \quad$ heat of reaction j
$v_{i, j} \quad$ stoichiometric coefficient of species i in reaction j; value is positive for products and negative for reactants
$\hat{C}_{p, i} \quad$ constant pressure specific molar heat capacity of species i
$D \quad$ inside diameter of a PFR; a subscripted p denotes a particle diameter
$P \quad$ pressure, a subscripted i denotes the partial pressure of species i
$T \quad$ temperature; a subscripted e denotes the (external) temperature of the heat transfer media
$U \quad$ overall heat transfer coefficient for heat transfer through the wall of a tubular reactor
$\dot{V} \quad$ volumetric flow rate; a superscripted zero denotes the value at the reactor inlet
$\dot{n}_{i} \quad$ molar flow rate of species i; a superscripted zero denotes the value at the reactor inlet
$r_{j} \quad$ the generalized rate of reaction j
t time
$z \quad$ axial distance from the inlet to a PFR

Equations

$$
\begin{equation*}
\frac{\partial \dot{n}_{i}}{\partial z}=\frac{\pi D^{2}}{4} \sum_{\substack{j=a l l \\ \text { reactions }}} v_{i, j} r_{j}-\frac{\pi D^{2}}{4 \dot{V}} \frac{\partial \dot{n}_{i}}{\partial t}+\frac{\pi D^{2} \dot{n}_{i}}{4 \dot{V}^{2}} \frac{\partial \dot{V}}{\partial t} \tag{27.1}
\end{equation*}
$$

$$
\left.\begin{array}{rl}
\pi D U\left(T_{e}-T\right)= & \left(\sum_{\substack{i=a l l \\
\text { species }}} \dot{n}_{i} \hat{C}_{p i}\right) \frac{\partial T}{\partial z}+\frac{\pi D^{2}}{4} \sum_{\substack{j=a l l \\
\text { reacions }}}\left(r_{j} \Delta H_{j}\right) \\
& +\frac{\pi D^{2}}{4 \dot{V}} \sum_{\substack{i=a l l \\
\text { species }}}\left(\dot{n}_{i} \hat{C}_{p i}\right) \frac{\partial T}{\partial t}-\frac{\pi D^{2}}{4} \frac{\partial P}{\partial t}
\end{array}\right\} \begin{aligned}
\frac{\partial \dot{n}_{i}}{\partial z} \cong \frac{\Delta \dot{n}_{i}}{\Delta z} \\
\frac{\partial T}{\partial z}=\frac{\Delta T}{\Delta z} \\
\frac{\partial \dot{n}_{i}}{\partial t} \cong \frac{\Delta \dot{n}_{i}}{\Delta t} \\
\frac{\partial T}{\partial t}=\frac{\Delta T}{\Delta t}
\end{aligned}
$$

