AFCoKaRE Practice Problem 26.2 Solution

<u>Purpose</u>: This problem will allow you to practice the quantitative analysis of a steady state PFR.

Problem Statement: The heat of reaction (1) is 44.8 kJ mol⁻¹, and it is irreversible. The rate expression is equation (2) where the pre-exponential factor is 7.22×10^6 mol atm⁻² cm⁻³ s⁻¹ and the activation energy is 84.1 kJ mol⁻¹. A 10 foot long tubular reactor with a diameter of 1 inch is heated by a fluid at 200 °C that is in contact with the outside of the tube wall. The overall heat transfer coefficient is 7.48 x 10⁴ J h⁻¹ ft⁻² K⁻¹. Pressure drop through the reactor is negligible. If a gas phase mixture of 60% A and 40% B enters the reactor at 282 L min⁻¹, 2.5 atm and 175 °C and if the heat capacities of A, B and Z are equal to 18.0, 12.25 and 21.2 cal mol⁻¹ K⁻¹, what steady state outlet temperature and conversion of B will result?

$A + B \rightarrow Z$	(1)
$r_1 = k_1 P_A P_B$	(2)