AFCoKaRE Practice Problem 26.2 Solution

Purpose: This problem will allow you to practice the quantitative analysis of a steady state PFR.

Problem Statement: The heat of reaction (1) is $44.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and it is irreversible. The rate expression is equation (2) where the pre-exponential factor is $7.22 \times 10^{6} \mathrm{~mol}$ $\mathrm{atm}^{-2} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$ and the activation energy is $84.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. A 10 foot long tubular reactor with a diameter of 1 inch is heated by a fluid at $200^{\circ} \mathrm{C}$ that is in contact with the outside of the tube wall. The overall heat transfer coefficient is $7.48 \times 10^{4} \mathrm{~J} \mathrm{~h}^{-1} \mathrm{ft}^{-2} \mathrm{~K}^{-1}$. Pressure drop through the reactor is negligible. If a gas phase mixture of $60 \% A$ and $40 \% B$ enters the reactor at $282 \mathrm{~L} \mathrm{~min}^{-1}, 2.5 \mathrm{~atm}$ and $175^{\circ} \mathrm{C}$ and if the heat capacities of A, B and Z are equal to $18.0,12.25$ and $21.2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$, what steady state outlet temperature and conversion of B will result?

$$
\begin{align*}
& A+B \rightarrow Z \tag{1}\\
& r_{1}=k_{1} P_{A} P_{B} \tag{2}
\end{align*}
$$

