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Unit 26. Analysis of Steady State PFRs

Overview
Unit 26 describes how to write an accurate mathematical model for a reactor that obeys the 

assumptions of a plug flow reactor and that operates at steady state. It also provides a general approach 
for solving the resulting set of coupled ordinary differential equations. That approach is analogous to the 

approach for batch reactors and transient CSTRs. While the approach will likely need to be adapted to 
match the particular task at hand, it will allow an accurate quantitative analysis of steady state plug flow 

reactor processes.

Learning Objectives
Upon completion of this unit, you should be able to perform the following specific tasks and be able to 
recognize when they are needed and apply them correctly in the course of a more complex analysis:

• Recognize problems wherein the reactor can be modeled as a steady state PFR
• Formulate the PFR design equations needed to model or design a specific reactor

• Identify the dependent and independent variables in the design equations for a steady state PFR
• Solve the steady state PFR design equations and use the results to perform requested reaction 

engineering or design tasks

Information
The PFR design equations were derived in Unit 17, and it was noted that if the reactor operates at 

steady state, then all the derivatives with respect to time can be set equal to zero. The resulting steady 

state PFR design equations are reproduced here as equations (26.1) through (26.4). Equation (26.1) is a 

mole balance on species i, equation (26.2) is an energy balance on the entire PFR, and equations (26.3) 

and (26.4) are mechanical energy (momentum) balances on the reactor. Equation (26.3) is used if the 

reactor does not contain any packing, while equation (26.4) is used if the reactor constitutes a packed 
bed. Refer to Unit 17 if you are uncertain as to the meaning of any of the variables appearing in these 

equations.
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It can be seen above that the steady state PFR design equations form a set of coupled ordinary 
differential equations. If equation (26.3) is one of the design equations needed to model a particular plug 

flow reactor, then there will be one more dependent variable, ṅi, T, P and  !V , than equations. A set of 

initial value ODEs cannot be solved unless the number of dependent variables is equal to the number of 

equations, hence either one variable must be re-expressed in terms of the others, or an additional 
equation must be added. Here we will use the former approach. If the fluid in the reactor is a liquid, it is 

very often acceptable to treat the liquid density as constant. In this case, the derivative of the volumetric 
flow rate with respect to axial position will equal zero. If the fluid is a gas, then the appropriate equation of 

state should be used. For example, if the fluid can be treated as an ideal gas, the derivative of the 
volumetric flow rate with respect to the axial position can be re-expressed using equation (26.5). Of 

course, the total molar flow rate is just the sum of the molar flow rates of each of the species, and the 
derivative of the total molar flow rate is just the sum of the derivatives of the molar flow rates of the 

species, equation (26.6).
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Once the number of differential equations equals the number of dependent variables, the equations 

can be solved. Here we will assume that they can be written in the matrix form shown in equation (26.7) 

where the elements in the vector y represent the dependent variables. In these equations, z is the 

independent variable, and it represents the axial distance from the inlet to the reactor. Typically, the 

values of the dependent variables, y, will be known at z = 0. Thus, the design equations represent a set of 

initial value ordinary differential equations (ODEs). Except for a few very simple situations, it will not be 
possible to solve these equations analytically, so here it is assumed that all solutions will be obtained 

numerically.

dy
dz

= f y, z( );   y z = 0( ) = y0  (26.7)

There are many software packages that can be used to solve the design equations numerically, and 

you should use the one you feel most comfortable with. Supplemental Unit S5 presents a brief 
introduction to the numerical solution of initial value ODEs; if you aren’t familiar with numerical solution of 

initial value ODEs, you should read Supplemental Unit S5. If you plan to use MATLAB to solve the design 
equations, Supplemental Unit S5 also presents template files that can be used to solve sets of initial 
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value ODEs of the form given in equation (26.7). No matter what software package you use, when the 
equations are written in the form of equation (26.7), you will need to provide three things as input to the 

software:

• the initial values of the dependent variables, that is, the values of each yi at z = 0
• the final value of either z or one of the dependent variables

• code that evaluates each of the functions, fi, given a value for z and values for each of the 

dependent variables, yi

In some cases it may be known or stated that the pressure drop through the reactor is negligible, 
and in that situation, neither of the mechanical energy balance equations is needed. If the reactor 

operates isothermally, which is not all that common for commercial scale reactors, then the mole balance 
design equations can be solved separately from the energy balance equation (and for some problems the 

energy balance design equation won’t be needed). Also, the design equations have been written above 

using the axial position, z, as the independent variable. In some situations it is preferable to use the 

reactor volume (which is equal to the fluid volume in a PFR) as the independent variable. This is easily 

accomplished. The volume and the axial position are related according to equation (26.8). As long as the 
reactor diameter is constant, differentiating equation (26.8) leads to equation (26.9) which can then be 

substituted into any of the design equations above. For example, substitution of equation (26.9) into the 
mole balance design equation (26.1) gives the equivalent mole balance design equation (26.10).
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4
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Because the design equations are initial value ODEs, solving the steady state PFR design 

equations is quite similar to solving the batch or transient CSTR design equations. It’s always a good idea 
to start by converting all the known quantities into a consistent set of units. Making a schematic diagram 

and putting all the known information on the diagram can also be helpful. A mole balance, equation (26.1) 
should then be written for every species present in the system. At the same time, an energy balance on 

the reactor and a momentum balance should be written. After the equations have been written, they 
should be examined for terms that are zero-valued or negligible, and those terms should be eliminated.

One or more rates will appear in the design equations, and the code that is written to evaluate the 
design equations will need to use the corresponding rate expressions. The rate expressions will typically 

contain either concentrations or partial pressures of reagents in the reactor. Recalling that the code will be 
given values for the dependent variables, if partial pressures appear in the rate expressions, equation 
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(26.11) can used to calculate their values, providing that the fluid behaves as an ideal gas. Similarly, if 
concentrations appear in the rate expressions, equation (26.12) can first be used. If the fluid phase is a 

liquid, it can often be assumed to have a constant density in which case equation (26.13) can be used, 
and if the fluid phase is an ideal gas, equation (26.14) can be used.
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The numerical solution of the design equations requires the final value of either the independent 

variable or one of the dependent variables. Solving the equations numerically will then generate values 
for the remaining independent and dependent variables. This procedure is straightforward if the unknown 

quantities are the outlet values of the dependent variables, but there could be situations where another 
parameter is unknown. For example, one might know the length of the reactor and the desired conversion 

of a reactant and be asked to find an inlet temperature that will lead to the specified conversion. In such 
cases, the procedure given here will need to be modified. In this case, one approach would be to use trial 

and error where the inlet temperature is guessed, the design equations are integrated from the inlet to the 
specified length of the reactor, and the conversion is compared to the desired value. The process is then 

repeated until the desired value is obtained. Equivalently, the design equations could be solved for a 
number of different inlet temperatures and a plot constructed of conversion versus inlet temperature. The 

inlet temperature needed to meet the problem specification could then be read from the plot. In short, 
every problem is unique and the general approach described here will likely need to be modified or 

adjusted when solving any one particular problem.
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