
A First Course on Kinetics and Reaction Engineering

Example 26.3

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit.

Problem Statement
A perfectly insulated tubular reactor with a diameter of 10 cm and a length of 5 m is fed an aqueous 

solution containing A and B at concentrations of 1.0 and 1.2 M, respectively. This feed stream is at a 

constant temperature of 30 °C and flows at 75 L min-1. Reagents A and B react according to reaction (1) 
with a rate of reaction that is accurately described by equation (2). The heat of reaction (1) is -10,700 cal 

mol-1 and may be assumed to be constant. The heat capacity of the solution and the density of the 
solution may be taken to be constant and equal to those of water (1.0 cal g-1 K-1 and 1.0 g cm-3). The 

pressure drop in the reactor is negligible. Plot the steady state molar flow rate of A and the temperature 
as a function of distance into the reactor.
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Problem Analysis
The reactor in this problem is a steady state PFR operating adiabatically. The reaction kinetics are 

known; this is a reaction engineering question. To answer this question, mole balance design equations 
will be written for each reactant and product in the system. An energy balance will also be written, but a 

mechanical energy balance is not needed since the problem states that the pressure drop is negligible. 

The design equations will then be solved for a variety of reactor lengths between zero and 5 m. Each 

solution will yield the molar flow rate of A and the temperature at the corresponding value of z, the 

distance into the reactor. The results can then be plotted to obtain the requested solution.

Problem Solution

The following quantities are provided in the problem statement: D = 10 cm, L = 5 m, CA0 = 1.0 mol 

L-1, CB0 = 1.2 mol L-1, ṅY0 = 0, ṅZ0 = 0,  T0 = 30 ºC, k0 = 8.72 x 105 L mol-1 min-1, E = 7.2 kcal mol-1, ΔH(T) 

= -10700 cal mol-1,  
!Cp = 1.0 cal g-1 K-1, ρ = 1.0 g cm-3 and  !V 0 = 75 L min-1. The system can be 

represented schematically as shown in Figure 1. In constructing Figure 1, it was noted that since the 

density of the fluid is constant, the outlet volumetric flow rate will equal the inlet volumetric flow rate. In 

addition, it was noted that the inlet molar flow rates of A and B are constant and equal to the product of 
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the inlet concentration and the inlet volumetric flow rate. Since the problem does not mention the 

presence of Y or Z in the feed, the inlet molar flow rates of Y and Z are inferred to equal zero.

 

T 0 = 303 K
!V 0 = 75 L min−1

!nA
0 = !V 0CA

0

!nB
0 = !V 0CB

0

!nY
0 = 0
!nZ

0 = 0

A + B ⇄ Y + Z   (1)
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!V = !V 0

!nA =
!nB =
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D = 10 cm
L = 5 m
!Q = 0

Figure 1. Schematic representation of the reactor.

The generalized, steady-state mole balance equation for a PFR is given in equation (3). Since only 

one reaction is taking place, the summation will reduce to a single term. Equation (3) can be used to 
generate the mole balances for each of the reactants and products in the system as given in equations 

(4) through (7). Note, one could also write a mole balance on the solvent, water, but we will see here that 
it is not needed in order to solve the problem. Equations (4) through (7) are each in the standard form 

with a single derivative on the left of the equals sign and a function of the independent and dependent 
variables on the right of the equals sign.
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4
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The general steady-state energy balance equation for a PFR is given in equation (8), which for this 

problem simplifies to equation (9). In simplifying equation (8) the summation in the denominator was 
replaced by the heat capacity of the solution as a whole, the heat transfer term in the numerator was 
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eliminated since the reactor is adiabatic, and the summation in the numerator was expanded. Equation 
(9) is also in the standard form. Since pressure drop can be neglected, a mechanical energy balance is 

not needed.
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0 T( )
!Vρ fluid

"Cp, fluid

 (9)

Design equations (4) through (7) and (9) represent a set of 5 ordinary differential equations (ODEs) 

with 5 dependent variables (ṅA, ṅB, ṅY, ṅZ and T) and one independent variable (z). They are initial value 

ODEs because the value of each of the 5 dependent variables is known at the same value (z = z0 = 0) of 

the independent variable. A set of n initial value ODEs containing n dependent variables and one 

independent variable can be solved numerically to obtain the values of all of the variables at some other 

point of interest. If you are not familiar with the numerical solution of initial value ODEs, Supplemental 
Unit S5 of “A First Course on Kinetics and Reaction Engineering” offers a brief introduction to the topic 

and provides MATLAB template files named SolvIVDifI.m and SolvIVDifD.m that can be used as a starting 
point for solving equations of this kind.

Generally, no matter what software package is used, the numerical solution of these equations will 

require you to provide (a) the initial values (z0, ṅA0, ṅB0, ṅY0, ṅZ0 and T0), (b) the final value of either the 

independent variable or one of the dependent variables at the point of interest and (c) code that, given 

values for the independent and dependent variables, evaluates the functions f1 through f5 in equations (4) 

through (7) and (9). The initial values (at z = z0 = 0) needed to solve the design equations (ṅA0, ṅB0, ṅY0, 
ṅZ0 and T0) are given in Figure 1. The final value is that the reactor is 5 m long (z = zf = L = 5 m).

Looking at the functions f1 through f5, the only quantity other than the independent and dependent 

variables that is not known is r1. The code that will evaluate functions f1 through f5 will be given values of 

z, ṅA, ṅB, ṅY, ṅZ and T, so all it will need to calculate is the rate. This can be computed using equation (2), 

but in order to do so, concentrations are needed. By definition, these can be computed using equations 

(10) and (11).

  
CA =

!nA
!V

 (10)

  
CB =

!nB
!V

 (11)
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In this problem we are asked to plot the molar flow rate of A and the temperature along the length of 

the reactor. To do so, the design equations are integrated from z = 0 (the inlet) to varying final values of z 

that span the range from zero to the given reactor length, L. Doing so for any one final value of z yields 

the values of the dependent variables at that axial position. Since the molar flow rate of A and the 

temperature are dependent variables, no further calculations are needed. The resulting data can then be 
plotted, yielding Figures 2 and 3.

Figure 2. Molar flow rate of A as a function of axial position in the reactor.

The curve in Figure 2 shows the shape one would expect on the basis of a qualitative analysis of 

the PFR, as discussed in Unit 25. It starts at its maximum value and then decreases, with a decreasing 
slope until it eventually asymptotically approaches the equilibrium value. In this case, the reaction is 

irreversible, so if the reactor was longer, the molar flow rate of A would eventually become equal to zero. 
Similarly, the temperature displays the expected behavior by steadily increasing at a decreasing rate until 

it asymptotically reaches a constant value.
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Figure 3. Temperature as a function of axial position in the reactor.

Calculation Details Using MATLAB
If you elect to use MATLAB to solve the design equations, Supplemental Unit S5 provides template 

files that can be used. In this problem, the equations are initial value ODEs and the final value of the 

independent variable is provided, so the appropriate template file is SolvIVDifI.m. Before that file can be 
used, you must make four required modifications. Here I will also describe a few non-required 

modifications that you might want to consider when solving problems of this type. In particular, you might 
suspect that, like in Example 26.2, it will be necessary to create some kind of loop that repeats the 

calculations many times using a different value of L each time and saving the results for subsequent 

plotting. We will see that when using MATLAB this is not necessary.
To begin, I made a copy of the template file and saved it as Example_26_3.m; a copy of that file 

accompanies this solution. Since the function name must match the filename, I changed the name of the 
function to Example_26_3. At the same time, knowing that I won’t need to use the results from these 

calculations in subsequent calculations, I changed the function so that it does not return any values. The 
template file begins with a long set of comments describing what it does and how to use it; I replaced 

these comments with a brief comment stating the purpose of the modified version. None of these 
modifications were required. The first required modification involves entering all the known quantities from 

the problem statement along with universal constants that will be needed (from handbooks or other 
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reference sources). As these were entered, they were converted to a consistent set of units. At the same 
time I calculated the inlet molar flow rates of A and B, since those quantities are also constants. The result 

of making all these modifications is shown in Listing 1.

Listing 1. Initial comment, function declaration and known constants after modification of SolvIVDifI.m

The second required modification involves entering code that, given values for the independent and 

dependent variables, evaluates the functions f1 through f5 in equations (4) through (7) and (9).  This takes 

place within an internal function named odeqns. Notice that within that internal function, the equations 

are provided as a vector quantity. Thus, it is necessary to map the dependent variables used in the 

problem statement (ṅA, ṅB, ṅY, ṅZ and T) to a vector z, and the corresponding derivatives are mapped to a 

vector dzdt. (Don’t be confused: in the template file z represents the vector of dependent variables and t 

represents the independent variable whereas in our problem, z is the variable used for the independent 

variable. In other words, the independent variable, z, used in the problem statement maps to the variable 

t in the MATLAB code.) I find it useful at the start of the internal function that will evaluate the derivatives, 

to define local variables with the names used in the problem statement. This modification is not required, 

but in my opinion, it makes the code more readable and easier to debug. In addition, the resulting list of 

variables serves as a reminder of the mapping of the problem statement variables to the vector z. The 

required code first calculates the concentrations of A and B that appear in the rate expression according 

% Modified version of the MATLAB template file SolvIVDifI.m used in the
% solution of Example 26.3 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_26_3
    % Known quantities and constants
    D = 10; % cm
    L = 500; % cm
    CA0 = 1.0/1000.0; % mol/cm^3
    CB0 = 1.2/1000.0; % mol/cm^3
    nY0 = 0;
    nZ0 = 0;
    T0 = 30 + 273.15; % K
    k0 = 8.72E5*1000.; % cm^3/(mol min)
    E = 7200; % cal/mol
    dH = -10700; % cal/mol
    Cp = 1.0; % cal/(g K)
    rho = 1.0; % g/cm^3
    VFR = 75*1000; % cm^3
    % Universal constants
    R = 1.987; % cal/(mol K)
    % Calculated constants
    nA0 = CA0*VFR;
    nB0 = CB0*VFR;
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to equations (10) and (11). Following that, the rate is calculated using equation (2). Finally, the functions f1 
through f5 are evaluated using equations (4) through (7) and (9), saving the results in the vector dzdt. 

The resulting code is shown in Listing 2.

Listing 2. Results of the second required modification.

The third required modification involves providing the initial values of the independent and 

dependent variables and the final value of the independent variable. Recall that the independent variable, 

z, from the problem statement maps to the variable t in the code. Thus t0 in the code is set equal to the 

initial value of the axial position, which is denoted as z0 = 0 in the problem statement. The initial values of 

the dependent variables are entered as a vector named z0, and they must use the same mapping of the 

problem variables (ṅA0, ṅB0, ṅY0, ṅZ0 and T0) to the vector z0 as was used previously to map (ṅA, ṅB, ṅY, ṅZ 

and T) to z. As with the initial value, the final value, zf, in the problem statement, maps to tf in the code. 

The results of performing this modification are shown in Listing 3.

Listing 3. Results of the third required modification.

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nB = z(2);
        nY = z(3);
        nZ = z(4);
        T = z(5);
        CA = nA/VFR; % equation (10)
        CB = nB/VFR; % equation (11)
        r = k0*exp(-E/R/T)*CA*CB; % equation (2)
        dzdt = [
            -pi()*D^2/4*r % equation (4)
            -pi()*D^2/4*r % equation (5)
            pi()*D^2/4*r % equation (6)
            pi()*D^2/4*r % equation (7)
            -pi()*D^2/4*r*dH/VFR/rho/Cp % equation (9)
        ];
    end % of internal function odeqns

    % Initial and final values
    t0 = 0;
    z0 = [
        nA0
        nB0
        nY0
        nZ0
        T0
    ];
    tf = L;
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The fourth and final required modification is to use the results from solving the ODEs to calculate 
whatever the problem requested. In this case all that is necessary is to plot the results. Remember earlier 

I said that we did not need to use a loop to calculate and save values for plotting? As noted in 
Supplemental Unit S5, the way an initial value ODE solver in MATLAB works is to increase the 

independent variable in small steps, solving the ODEs at each step. When it reaches the final condition, it 
stops and returns the value of the independent variable and the corresponding values of the dependent 

variables at each of those steps. In other words, it returns all the data we need to make the plot.

In the template file, the names of the returned variables are t and zz. The vector, t, contains the 

starting value of the independent variable and its value at each of the steps the solver took. The matrix, 

zz, has one column for each dependent variable. The rows contain the values of the dependent variables 

corresponding to each of the values of the independent variable in the vector, t. Thus, to make the 

requested plots, all we need to do is plot the appropriate column of the matrix, zz, versus the vector, t. 

The mapping in Listing 2 shows that z(1) corresponds to ṅA and z(5) corresponds to the temperature; 

therefore the requested plot of ṅA vs. axial position (z) is a plot of the first column of the matrix zz versus 

the vector t (which maps to the axial position). The requested plot of T vs. axial position (z) is a plot of the 

first column of the matrix zz versus the vector t (which maps to the axial position). The code shown in 

Listing 4.

Listing 4. Results of the fourth required modification.

Once the file containing all the modifications had been saved, it was executed by typing 

Example_26_3 at the MATLAB command prompt. Doing so generated Figures 2 and 3, shown previously.

    % Generate the plots
    figure
    plot(t,zz(:,1))
    title('Molar Flow of A vs. Axial Position')
    xlabel('Axial Position z (m)')
    ylabel('Molar Flow Rate of A (mol/min)')
    figure
    plot(t,zz(:,5)-273.15)
    title('Temperature vs. Axial Position')
    xlabel('Axial Position z (m)')
    ylabel('Temperature (deg C)')
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