
A First Course on Kinetics and Reaction Engineering

Example 26.2

Problem Purpose
This problem will help you determine whether you have mastered the learning objectives for this 

unit. It illustrates the analysis of a system where more than one reaction is taking place. It also shows one 
situation where the standard problem solving approach provided in the reading needs to be modified 

slightly.

Problem Statement
An adiabatic plug flow reactor with a diameter of 10 cm and a length of 5 m will be fed an aqueous 

solution containing A and B at 1.0 and 1.2 M concentrations, respectively. The feed will be supplied at 30 

°C. Series-parallel reactions (1) and (2) below will take place; with the rates given in equations (3) and 
(4). The heat of reaction (1) is -11,300 cal mol-1 and that of reaction (2) is -11,700 cal mol-1; both heats of 

reaction may be assumed to be constant. The heat capacity of the solution and the density of the solution 
may be taken to be constant and equal to those of water (1.0 cal g-1 K-1 and 1.0 g cm-3). What volumetric 

flow rate will maximize the outlet concentration of the desired product D? (Pressure drop in the reactor 
may be neglected.)

A + B ⇄ D + S (1)

A + D  ⇄ U + S (2)

  
r1 = 8.93×102  L mol−1  min−1( )exp −6.7 kcal mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CACB  (3)

  
r2 = 9.24×102  L mol−1  min−1( )exp −5.1 kcal mol−1

RT
⎧
⎨
⎩

⎫
⎬
⎭

CACD  (4)

Problem Analysis
The reactor in this problem is a steady state PFR. The rate expression is known, so this is not a 

kinetics problem. To answer the reaction engineering questions, the mole and energy balance design 

equations will be solved and used to calculate the outlet concentration of D. A mechanical energy 
(momentum) balance will not be included in the design equations because the problem states that 

pressure drop may be neglected. The equations will be solved repeatedly using a range of values of the 
inlet volumetric flow rate, and the results will be plotted. The flow rate corresponding to the maximum 

concentration of D can then be determined by examining the plot.
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Problem Solution

The following quantities are provided in the problem statement or can be inferred: D = 10 cm, L = 5 

m, CA0 = 1.0 mol L-1, CB0 = 1.2 mol L-1, ṅD0 = 0, ṅS0 = 0, ṅU0 = 0,  T0 = 30 ºC = 303 K, k01 = 8.93 x 102 L 

mol-1 min-1, E1 = 6.7 kcal mol-1, k02 = 9.24 x 102 L mol-1 min-1, E2 = 5.1 kcal mol-1, ΔH1(T) = -11300 cal 

mol-1, ΔH2(T) = -11700 cal mol-1,  
!Cp = 1.0 cal g-1 K-1 and ρ = 1.0 g cm-3. Since the problem states that the 

heats of the reactions are constant, the values listed here apply at any temperature. The values listed 

here do not have consistent units (e. g. cm, m and L are used as measures of length, both cal and kcal 

are used for energy, etc.), so they should be converted to consistent units before using them in the design 

equations. The system can be represented schematically as shown in Figure 1.

 

T 0 = 303 K
!V 0 =
!nA

0 = !V 0CA
0

!nB
0 = !V 0CB

0

!nD
0 = 0
!nS

0 = 0
!nU

0 = 0

A + B ⇄ D + S   (1)

A + D  ⇄ U + S   (2)

 

T =
!V = !V 0

!nA =
!nB =
!nD =
!nS =
!nU =

 

D = 10 cm
L = 5 m
!Q = 0

Figure 1. Schematic representation of the reactor.

The generalized, steady-state mole balance equation for a PFR is given in equation (5). It can be 

used to generate the mole balances for each of the reactants and products present in the system as 
given in equations (6) through (10), where the equations are written in the preferred form with a single 

derivative on the left of the equals sign and a function of the independent and dependent variables on the 
right side of the equals sign. Since there are two reactions taking place, the summation expands to give 

two terms unless one of the stoichiometric coefficients is zero because that species does not participate 
in one of the reactions.

 

d !ni
dz

= πD2

4
ν i, jrj

j=1

Nrxns

∑
⎛

⎝⎜
⎞

⎠⎟
 (5)

   

d !nA

dz
= f1 z, !nA, !nB , !nD , !nS , !nU ,T( ) = πD2

4
−r1 − r2( )  (6)
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d !nB

dz
= f2 z, !nA, !nB , !nD , !nS , !nU ,T( ) = − πD2

4
r1  (7)

   

d !nD

dz
= f3 z, !nA, !nB , !nD , !nS , !nU ,T( ) = πD2

4
r1 − r2( )  (8)

   

d !nS

dz
= f4 z, !nA, !nB , !nD , !nS , !nU ,T( ) = πD2

4
r1 + r2( )  (9)

   

d !nU

dz
= f5 z, !nA, !nB , !nD , !nS , !nU ,T( ) = πD2

4
r2  (10)

The general steady-state energy balance equation for a PFR is given in equation (11). In simplifying 

equation (11) the summation in the denominator was replaced by the heat capacity of the solution as a 
whole, the heat transfer term in the numerator was eliminated since the reactor is adiabatic, and the 

summation in the numerator was expanded over the two reactions taking place. This leads to equation 
(12) which is again written in the preferred form. Since pressure drop can be neglected, a mechanical 

energy (momentum) balance is not needed because the pressure drop is specified to be insignificant.

 

dT
dz

=
πDU Te −T( )− πD2

4
rjΔH j T( )

j=1

Nrxns

∑⎛
⎝⎜

⎞

⎠⎟

!niĈp,i
i=1

Nspecies

∑⎛

⎝⎜
⎞

⎠⎟

 (11)

   

dT
dz

= f6 z, !nA, !nB , !nD , !nS , !nU ,T( ) =
− πD2

4
r1ΔH1

0 T( ) + r2ΔH2
0 T( )( )

!Vρ "Cp

 (12)

Design equations (6) through (10) and (12) represent a set of 6 ordinary differential equations 

(ODEs) with 6 dependent variables (ṅA, ṅB, ṅD, ṅS, ṅU and T) and one independent variable (z). They are 

initial value ODEs because the value of each of the 6 dependent variables is known at the same value (z0 
= 0) of the independent variable. A set of n initial value ODEs containing n dependent variables and one 

independent variable can be solved numerically to obtain the values of all of the variables at some other 

point of interest. If you are not familiar with the numerical solution of initial value ODEs, Supplemental 
Unit S5 of “A First Course on Kinetics and Reaction Engineering” offers a brief introduction to the topic 

and provides MATLAB template files named SolvIVDifI.m and SolvIVDifD.m that can be used as a starting 
point for solving equations of this kind if one elects to use MATLAB for that purpose.

Generally, no matter what software package is used, the numerical solution of these equations will 

require you to provide (a) the initial values (z0, ṅA0, ṅB0, ṅD0, ṅS0, ṅU0 and T0), (b) the final value of either 

the independent variable or one of the dependent variables at the point of interest and (c) code that, given 
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values for the independent and dependent variables, evaluates the functions f1 through f6 in equations (6) 

through (10) and (12).
As described in the problem analysis above, we will choose a value for the inlet volumetric flow 

rate, solve the design equations, calculate the outlet concentration of D, plot that concentration versus the 
chosen inlet volumetric flow rate and repeat. Noting that the inlet concentrations of A and B are given (all 

other inlet concentrations are presumed to equal zero), the inlet molar flow rates can be calculated as 

indicated in Figure 1. This gives the initial values (ṅA0, ṅB0, ṅD0, ṅS0, ṅU0 and T0 at z = z0 = 0) needed to 

solve the design equations. The final value is that the reactor is 5 m long, that is, z = zf = L = 5 m.

Looking at the functions f1 through f6, the only quantities that have not already been specified are 

r1, r2 and  !V , but since the liquid density is constant,  !V will equal the inlet volumetric flow rate,  !V 0 . The 

code that will evaluate functions f1 through f6 will be given values of z, ṅA, ṅB, ṅD, ṅS, ṅU and T, so all it will 

need to calculate are the two rates. These can be computed using equations (3) and (4), but in order to 

do so, concentrations are needed. By definition, these can be computed using equations (13) through 

(15). It is important to remember that in a flow system, the concentration is the molar flow rate divided by 

the volumetric flow rate, not the molar flow rate divided by the volume.

  
CA =

!nA
!V

 (13)

  
CB =

!nB
!V

 (14)

  
CD =

!nD
!V

 (15)

This gives all the information needed to solve the design equations, so at this point we can proceed 
as follows:

• Choose a volumetric flow rate

• Solve the design equations, obtaining outlet values of ṅA, ṅB, ṅD, ṅS, ṅU and T
• Calculate the corresponding outlet molar concentration of D using equation (15)

• Repeat over a range of volumetric flow rates, plotting the outlet concentration of D as a function 
of the volumetric flow rate

• Identify the volumetric flow rate that maximizes the outlet concentration of D
The resulting plot of the outlet concentration of D versus volumetric flow rate is shown in Figure 2. It 

can be seen that a volumetric flow rate of 2100 cm3 min-1 maximizes the final concentration of D at 6.85 x 
10-5 mol cm-3.
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Figure 2. Outlet concentration of D as a function of volumetric flow rate.

Calculation Details Using MATLAB
If you elect to use MATLAB to solve the design equations, Supplemental Unit S5 provides template 

files that can be used. In this problem, the equations are initial value ODEs and the final value of the 
independent variable is provided, so the appropriate template file is SolvIVDifI.m. Before that file can be 

used, you must make four required modifications. Here I will also describe a few non-required 
modifications that you might want to consider when solving problems of this type.

To begin, I made a copy of the template file and saved it as Example_26_2.m; a copy of that file 
accompanies this solution. Since the function name must match the filename, I changed the name of the 

function to Example_26_2. At the same time, knowing that I won’t need to use the results from these 
calculations in subsequent calculations, I changed the function so that it does not return any values. The 

template file begins with a long set of comments describing what it does and how to use it; I replaced 
these comments with a brief comment stating the purpose of the modified version. None of these 

modifications were required. The first required modification involves entering all the known quantities from 
the problem statement along with universal constants that will be needed (from handbooks or other 

reference sources). As these were entered, they were converted to a consistent set of units. The result of 
making all these modifications is shown in Listing 1.
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Listing 1. Initial comment, function declaration and known constants after modification of SolvIVDifI.m

I wanted to solve the set of ODEs many times for a range of different values of the volumetric flow 

rate. Therefore, immediately following the code shown in Listing 1, I set up storage for 100 different 
volumetric flow rates and the corresponding 100 outlet concentrations of D. Since I’m looking for the 

maximum concentration of D, I created a variable to store it and a variable to store the corresponding 

volumetric flow rate. I then created a for loop that would repeat the calculations for each of the 100 

volumetric flow rates. This is shown in Listing 2. The internal function that evaluates the ODEs (odeqns) 

cannot be located within this for loop, so I moved it to the very end of the file (this change is not shown 

here, but can be seen in full function file, Example_26_2.m, which accompanies this solution.

Listing 2. Code for looping over a range of inlet volumetric flow rates.

% Modified version of the MATLAB template file SolvIVDifI.m used in the
% solution of Example 26.2 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_26_2
    % Known quantities and constants
    D = 10; % cm
    L = 500; % cm
    CA0 = 1.0/1000.0; % mol/cm^3
    CB0 = 1.2/1000.0; % mol/cm^3
    nD0 = 0;
    nS0 = 0;
    nU0 = 0;
    T0 = 30 + 273.15; % K
    k01 = 8.93E2*1000.; % cm^3/(mol min)
    E1 = 6700; % cal/mol
    k02 = 9.24E2*1000.; % cm^3/(mol min)
    E2 = 5100; % cal/mol
    dH1 = -11300; % cal/mol
    dH2 = -11700; % cal/mol
    Cp = 1.0; % cal/(g K)
    rho = 1.0; % g/cm^3
    % Universal Constants
    R = 1.987; % cal/(mol K)

    % Create 100 element vectors to hold the data for later plotting and
    % set the range of values of VFR to be used
    VFR = linspace(0,1.0E4);
    concD = zeros(100,1);
    % Create variables to hold the maximum CD and corresponding VFR
    VFR_at_max = 0;
    concD_max = 0;
    % Solve the design equations for the chosen range of VFRs
    for i = 1:100
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There are two additional quantities that are constant each time the design equations are solved. 
These are the inlet molar flow rates of A and B. They couldn’t be entered along with all the previous 

constants because they depend upon the value of the volumetric flow rate. Within the for loop that 

began in Listing 2, the volumetric flow rate is constant, so the first thing I do within that loop is to calculate 

these quantities. The code added to do so is shown in Listing 3.

Listing 3. Code within the for loop that calculates the inlet molar flow rates of A and B.

The second required modification involves entering code that, given values for the independent and 

dependent variables, evaluates the functions f1 through f6 in equations (6) through (10) and (12).  This 

takes place within an internal function named odeeqns, and as noted earlier, that internal function cannot 

be inside the for loop, so I moved it to the end of Example_26_2 before modifying it. Notice that within 

that internal function, the equations are provided as a vector quantity. Thus, it is necessary to map the 

dependent variables used in the problem statement (ṅA, ṅB, ṅD, ṅS, ṅU and T) to a vector z, and the 

corresponding derivatives are mapped to a vector dzdt. (Don’t be confused: in the template file z 

represents the vector of dependent variables and t represents the independent variable whereas in our 

problem, z is the variable used for the independent variable. In other words, the independent variable, z, 

used in the problem statement maps to the variable t in the MATLAB code.) I find it useful at the start of 

the internal function that will evaluate the derivatives, to define local variables with the names used in the 

problem statement. This modification is not required, but in my opinion, it makes the code more readable 

and easier to debug. In addition, the resulting list of variables serves as a reminder of the mapping of the 

problem statement variables to the vector z. The required code first calculates the three concentrations 

that appear in the rate expressions according to equations (13) through (15). Following that, the rates are 

calculated using equations (3) and (4). Finally, the functions f1 through f6 are evaluated using equations 

(6) through (10) and (12), saving the results in the vector dzdt. The resulting code is shown in Listing 3.

        % Additional Calculated Constants
        nA0 = VFR(i)*CA0;
        nB0 = VFR(i)*CB0;
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Listing 3. Results of the second required modification.

The third required modification involves providing the initial values of the independent and 

dependent variables and the final value of the independent variable. Recall that the independent variable, 

z, from the problem statement maps to the variable t in the code. Thus t0 in the code is set equal to the 

initial value of the axial position, which is denoted as z0 = 0 in the problem statement. The initial values of 

the dependent variables are entered as a vector named z0, and they must use the same mapping of the 

problem variables (ṅA0, ṅB0, ṅD0, ṅS0, ṅU0 and T0) to the vector z0 as was used previously to map (ṅA, ṅB, 

ṅD, ṅS, ṅU and T) to z. As with the initial value, the final value, zf in the problem statement, maps to tf in 

the code. This code appears at the beginning of the for loop and is shown in Listing 4.

Listing 4. Results of the third required modification.

    % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nB = z(2);
        nD = z(3);
        nS = z(4);
        nU = z(5);
        T = z(6);
        CA = nA/VFR(i);
        CB = nB/VFR(i);
        CD = nD/VFR(i);
        r1 = k01*exp(-E1/R/T)*CA*CB;
        r2 = k02*exp(-E2/R/T)*CA*CD;
        dzdt = [
            pi()*D^2/4*(-r1-r2)
            pi()*D^2/4*(-r1)
            pi()*D^2/4*(r1-r2)
            pi()*D^2/4*(r1+r2)
            pi()*D^2/4*(r2)
            -pi()*D^2/4*(r1*dH1+r2*dH2)/VFR(i)/rho/Cp
        ];
    end % of internal function odeqns

        % Initial and final values
        t0 = 0;
        z0 = [
            nA0
            nB0
            nD0
            nS0
            nU0
            T0
        ];
        tf = L;
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The fourth and final required modification is to use the results from solving the ODEs to calculate 
whatever the problem requested. In this case, once the design equations have been solved, the 

concentration of D is calculated and saved for later plotting. Then, if it is a new maximum, that value and 
the corresponding volumetric flow rate are saved. Once the looping has finished and the design equations 

have been solved for all of the values of the volumetric flow rate, the plot is generated and the maximum 
concentration of D is reported along with the corresponding volumetric flow rate as shown in Listing 5.

Listing 5. Results of the fourth required modification.

Once the file containing all the modifications had been saved, it was executed by typing 

Example_26_2 at the MATLAB command prompt. Doing so generated Figure 2 and the output shown in 
Listing 6.

Listing 6. Output produced upon execution of the modified file.

        % Calculate the concentration of D
        concD(i) = z(3)./VFR(i);
        if (concD(i) > concD_max)
            concD_max = concD(i);
            VFR_at_max = VFR(i);
        end
    end % of loop through range of values of VFR
    
    % Generate the plot
    figure
    plot(VFR,concD)
    xlabel('Vol. Flow Rate (cm^3/min)')
    ylabel('Concentration of D (mol cm^3)')
    
    % Report the VFR and CD_max
    concD_max
    VFR_at_max

>> Example_26_2

concD_max =
   6.8543e-05

VFR_at_max =
   2.1212e+03
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