
A First Course on Kinetics and Reaction Engineering

Example 24.1

Problem Purpose
This example illustrates the situation where a CSTR can display multiple steady states.

Problem Statement
Irreversible reaction (1) is going to take place in an adiabatic CSTR with a volume of 500 cm3. A 

solution flowing at 1.0 cm3 s-1 and containing equal amounts of A and B (0.015 mol cm-3) at 50 °C will be 
used. The heat capacity of the fluid is essentially equal to that of the solvent, 0.35 cal g-1 K-1 and can be 

considered to be constant. The (constant) density of the fluid is 0.93 gm cm-3. The rate expression for 
reaction (1) is given in equation (2), and the heat of reaction (1) may be assumed to be constant and 

equal to -20 kJ mol-1. At these conditions three different steady states are possible; determine the 
conversion and outlet temperature for each of them.

A + B → Y + Z (1)
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mol s
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CACB  (2)

Problem Analysis
This problem involves a reaction taking place in a CSTR. The rate expression is known and we are 

asked to calculate reactor variables, hence it is a reaction engineering problem. To solve it, the mole and 
energy balance design equations will be written and solved, and the results will then be used to calculate 

any other quantities of interest. In this case, nothing has been changed and nothing is varying with time, 

so the reactor operates at steady state and the steady state form of the design equations can be used.

Problem Solution
The system can be represented schematically as shown in Figure 1. Some of the quantities 

provided in the problem statement will need to be converted to different units so that all quantities are in a 

consistent set of units. One way to do this is to convert the inlet temperature from °C to K and to convert 
the fluid heat capacity and the activation energy from cal or kcal to J. By doing so all volumes will use 
cm3, all times will use s, all molar quantities will use mol and all energies will use J. The fluid density and 

the fluid heat capacity also contain mass units, but it will be seen that these two quantities only appear 

once, and when they do, the mass units will cancel out.
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1: A + B ⇄ Y + Z, r1 is given by equation (2)1: A + B ⇄ Y + Z, r1 is given by equation (2)1: A + B ⇄ Y + Z, r1 is given by equation (2)
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Figure 1. Schematic representation of the reactor.

Mole balances can be written for each species present in the system. The generalized mole 
balance equation is given below. In this case, the reactor operates at steady state, so the derivative with 

respect to time is equal to zero. Furthermore, there is only one reaction taking place, so the summation 

reduces to a single term with j = 1.
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Writing the mole balance for each species then lead to equations (3) through (6).

   
0 = !nA

0 − !nA +Vν A,1r1 = !nA
0 − !nA −Vr1 = f1 !nA, !nB , !nY , !nZ ,T( )  (3)

   
0 = !nB

0 − !nB +Vν B,1r1 = !nB
0 − !nB −Vr1 = f2 !nA, !nB , !nY , !nZ ,T( )  (4)

   
0 = !nY

0 − !nY +VνY ,1r1 = !nY
0 − !nY +Vr1 = f3 !nA, !nB , !nY , !nZ ,T( )  (5)

   
0 = !nZ

0 − !nZ +VνZ ,1r1 = !nZ
0 − !nZ +Vr1 = f4 !nA, !nB , !nY , !nZ ,T( )  (6)

The general energy balance equation is given below. In this case the reactor operates at steady 

state, so each of the time derivatives is equal to zero. In addition, the heat term equals zero because the 
reactor is adiabatic and the work term is negligible. Instead of summing the individual heat capacities of 

the reagents, we can use the heat capacity of the fluid as a whole in this problem. However, that is 
provided as a mass heat capacity, so it will need to be multiplied by the total mass flow rate of the fluid, 

which, in turn, is equal to the volumetric flow rate times the fluid density. Also, the heat capacity is a 
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constant allowing evaluation of the integral. This results in the simplified energy balance given in equation 
(7).
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0 Ĉp,i dT

T 0

T

∫( )
i=all

species

∑ −V rjΔH j T( )( )
j=all

reactions

∑

   
0 = !Vρ fluid

"Cp, fluid T −T 0( ) +Vr1ΔH1 T( ) = f5 !nA, !nB , !nY , !nZ ,T( )  (7)

We now need to solve equations (3) through (7), but in order to do so, we need to identify the five 

unknown quantities we will solve for. In this case it is clear from the schematic diagram, Figure 1, that the 

values of ṅA, ṅB, ṅY, ṅZ and T are unknown. Since these quantities all appear in equations (3) through (7), 

they will be used as the unknowns.

Equations (3) through (7) do not contain integrals or derivatives. As such, one could attempt to 
solve them manually, using symbolic algebra software or using numerical methods software. A variety of 

software packages are available for doing so, and you should use the one you feel most comfortable with. 
Supplemental Unit S2 presents a brief introduction to the numerical solution of sets of non-differential 

equations like these using numerical methods software. No matter what software package you use, you 
typically will need to provide two things as input in order to solve the equations:

• Code that evaluates the functions, f1 through f5 in equations (3) through (7), given values of the 

unknown variables, ṅA, ṅB, ṅY, ṅZ and T
• A guess for the solution, that is, a guess for the values of ṅA, ṅB, ṅY, ṅZ and T that cause all of the 

functions, f1 through f5, to equal zero

The functions to be evaluated contain quantities other than the five unknown quantities. In order to 

evaluate the functions, values will be needed for each of those other quantities. The inlet volumetric flow 

rate is constant and its value is specified, as are the concentrations of the reagents in the inlet stream. 

That information is sufficient to calculate the inlet molar flow rates (ṅA0, ṅB0, ṅy0 and ṅZ0) as indicated in the 

schematic diagram, Figure 1. The reaction volume (V), heat capacity (Ĉp,fluid), density (ρfluid), inlet 

temperature (T0) and the heat of reaction (ΔH1(T)) are also constants whose values are given in the 

problem statement.

The rate, however, is not a constant, but its value can be computed when needed using the rate 
expression, equation (2). In order to do so, values are needed for the concentrations of A and B. These 

are easily calculated using equations (8) and (9). In equations (8) and (9), the outlet volumetric flow rate 
may be taken to equal the inlet volumetric flow rate (a known constant) since the liquid density is 

constant. The values of the molar flow rates of A and B will be given at the time the design equations are 
being evaluated.
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CA =

!nA
!V

 (8)

  
CB =

!nB
!V

 (9)

That is everything that is needed in order to evaluate the functions, f1 through f5. The only other 

thing that will be needed in order to solve the equations numerically is a guess for the values of the 

unknowns. Since all that is needed is a guess, one possibility is to use the inlet molar flow rates and 

temperature as the guess. With that, equations (3) through (7) can be solved numerically to find ṅA, ṅB, 
ṅY, ṅZ and T. The problem asked for the conversion and the outlet temperature. The latter is found directly 

by solving the design equations. The fractional conversion can be computed using equation (10) once the 

design equations have been solved to obtain ṅA (ṅA0 is a known constant).

   
fA =

!nA
0 − !nA

!nA
0  (10)

Upon performing these calculations one finds that there are three solutions to the steady state 
design equations. One steady state corresponds to an outlet temperature of 323 K and a conversion of 

0.03%, the second corresponds to a temperature of 409 K and a conversion of 38.8% and the third 
corresponds to a temperature of 538 K and a conversion of 97.6%.

Calculation Details Using MATLAB
Supplemental Unit S2 describes how to solve sets of non-differential equations numerically using 

MATLAB, and it provides a template file named SolvNonDif.m for doing so. Before it can be used to solve 
a problem, that template file must be modified in four places, each indicated by a comment that begins “% 

EDIT HERE”. In addition to those required modifications I made a few additional modifications that will be 
described here along with the required modifications.

I recommend that you work with a copy of the file that has been given a more meaningful name; I 
used Example_24_1.m. Since the function name must match the filename, I changed the name of the 

function to Example_24_1. At the same time, knowing that I won’t need to use the results from these 
calculations in subsequent calculations, I changed the function so that it does not return any values. 

However I know I will want to run it using different guesses for the solution, so I additionally changed the 
function statement so that the guesses for the outlet molar flow rates and the outlet temperature are 

passed in as arguments nAg, nBg, nYg, nZg and Tg. The template file begins with a long set of 

comments describing what it does and how to use it; I replaced these comments with a brief comment 

stating the purpose of the modified version. None of these modifications were required. As a result of 
making them, the beginning of the file looks as shown in Listing 1.
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Listing 1. Non-required modifications made at the beginning of the template file.

The first required modification is to enter the values of all universal and problem specific constants 

at the point indicated. At the same time these are entered, they should be converted to a consistent set of 
units. Listing 2 shows the next part of Example_24_1.m where these modifications were made.

Listing 2. Portion of the modified template file SolvNonDif.m where problem-specific and universal 
constants were entered in consistent units.

The second required modification involves entering the code to evaluate functions f1 through f5, 
equations (3) through (7). In the code, this occurs within an internal function named evalEqns; within 

evalEqns, both the unknowns and the equations are provided as vector quantities named z and f, 

respectively. Thus, it is necessary to map the variables used in the problem solution to represent the 

unknowns (ṅA, ṅB, ṅY, ṅZ and T) to a vector z, and to return the values of the functions in the vector f. I 

find it useful at the start of the internal function that will evaluate the functions, to define local variables 

with the names used in the problem statement. This modification is not required, but in my opinion, it 
makes the code more readable and easier to debug. In addition, the list of variables here serves as a 

reminder of the mapping of the problem statement variables to the vector z.

Recall from the solution that the functions contained variable quantities (r1, CA and CB) that depend 

upon the unknowns. In the code being written here to evaluate the functions, we are given values of the 

unknowns as just described. Therefore, these variable quantities can be evaluated here using the 
equations given in the problem statement, specifically equations (8), (9) and (2). The constants from the 

problem statement have already been entered and are available at this point in the MATLAB file, so the 

functions f1 through f5 can next be evaluated. The code containing all these modifications is shown in 

Listing 3.

% Modified version of the MATLAB template file SolvNonDif.m used in the
% solution of Example 24.1 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_24_1(nAg,nBg,nYg,nZg,Tg)

    % Known quantities and constants (in consistent units)
    V = 500; % cm3
    VFR = 1; % cm3/s
    CA0 = 0.015; % mol/cm3
    CB0 = CA0; % mol/cm3
    nA0 = VFR*CA0; % mol/s
    nB0 = VFR*CB0; % mol/s
    nY0 = 0; % mol/s
    nZ0 = 0; % mol/s
    T0 = 50 + 273.15; % K
    Cp = 0.35*4.184; % J/g/K
    rho = 0.93; % g/cm3
    dH = -20000; % J/mol
    k0 = 3.24e12; % cm3/mol/s (pre-exponential factor in equation (2))
    E = 25000*4.184; % J/mol (activation energy in equation (2))
    R = 8.31446; % J/mol/K
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Listing 3. Portion of the modified template file SolvNonDif.m showing the entry of the code to evaluate the 
functions being solved.

The third required modification is where guesses for the unknowns are provided. The guesses are 

entered in the array named z_guess. They must be entered using the same mapping of the unknowns to 

the vector z as was used above. The previous modification, where variables with more meaningful names 

were defined, serves as a key to remind you which variable is z1, which is z2, and so on. Since I will need 

to find different solutions to the equations, I will need to provide different guesses. For this reason, the 
function statement was modified earlier to accept the guesses as arguments. Thus, all that needs to be 

done is to set the values of z_guess equal to the guesses that were passed in as arguments, as shown 

in Listing 4.

Listing 4. Portion of the modified template file SolvNonDif.m where guesses are provided for the 
unknowns.

The final required modification only applies if you need to use the results from solving the set of 

equations to calculate other quantities. In this case, the problem asked for the conversion of A, which can 
be calculated using equation (10). Listing 5 shows the code that was used to do this; it also prints out the 

value of the temperature separately from the other unknowns, since the problem also asked for its value.

    % Function that evaluates the equations
    function f = evalEqns(z)
        % mapping of unknowns into vector z
        nA = z(1);
        nB = z(2);
        nY = z(3);
        nZ = z(4);
        T = z(5);
        % calculate variables quantities
        CA = nA/VFR; % equation (8)
        CB = nB/VFR; % equation (9)
        r1 = k0*exp(-E/R/T)*CA*CB; % equation (2)
        f = [
            nA0 - nA - V*r1
            nB0 - nB - V*r1
            nY0 - nY + V*r1
            nZ0 - nZ + V*r1
            VFR*rho*Cp*(T-T0) + V*r1*dH
        ];
    end % of internal function evalEqns

    % guesses for the solution
    z_guess = [
        nAg
        nBg
        nYg
        nZg
        Tg
    ];
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Listing 5. Portion of the modified template file SolvNonDif.m where the results of solving the set of non-
differential equations are used to calculate additional quantities.

At this point, the modified template file can be used to solve the equations. To do so, the function 

name is typed at the MATLAB command prompt, with guesses for the outlet molar flow rates and the final 
temperature (in K) as arguments within parentheses following the function name. One option for guessing 

the outlet molar flows and temperature is to guess the inlet values. (The inlet volumetric flow rate is 1.0 
cm3 s-1 and the inlet concentrations of A and B are 0.015 mol cm-3, so the inlet molar flows of A and B are 

0.015 mol s-1. The inlet flows of Y and Z are zero, and the inlet temperature is 25 ºC or 323 K.) Listing 6 
shows that in this case this works and a solution is found.

Listing 6. Execution of 24_Example_1 using the inlet molar flows and temperature as guesses for the 
outlet molar flows and temperature.

    % Report the results
    T = z(5)
    pct_conv = 100*(nA0-z(1))/nA0  % equation (10)

>> Example_24_1(0.015,0.015,0,0,323)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
    0.0150
    0.0150
    0.0000
    0.0000
  323.2167

The corresponding values of the functions being solved are as 
follows:

f =
   1.0e-13 *

   -0.0001
   -0.0001
    0.0001
    0.0001
   -0.3893

T =
  323.2167

pct_conv =
    0.0303
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In order to find another different steady state solution, I’ll need to provide a different guess for the 
solution. This steady state solution corresponds to a situation where essentially no reaction took place. 

Therefore one possibility is to guess essentially complete conversion of the reactants, and a higher final 
temperature (since the reaction is exothermic). Listing 7 shows that when I tried this, the equation solver 

stopped before it converged to a solution. Therefore, I used the unconverged solution it found as the 
guess, after which a second steady state solution was found as also shown in Listing 7.

At this point, I have no way of knowing whether this second steady state solution corresponds to 
the highest conversion steady state or the intermediate conversion steady state. Suspecting that there 

might be a steady state with a higher conversion, my third guess again used molar flows corresponding to 
essentially complete conversion, but I guessed a temperature (500 K) greater than the final temperature 

of the second solution I just found (409 K). Once again, the equation solver stopped before it converged 
to a solution, so I re-started as before, and at this point it converged to the third steady state solution, as 

shown in Listing 8.
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Listing 7. Execution of 24_Example_1 using a guess with near complete conversion.

>> Example_24_1(0,0,0.015,0.015,400)

Solver stopped prematurely.

fsolve stopped because it exceeded the function evaluation limit,
options.MaxFunEvals = 500 (the default value).

The solver found the following values for the unknowns:

z =
    0.0093
    0.0093
    0.0061
    0.0061
  408.2840

       ⋮

>> Example_24_1(0.0093,0.0093,0.0061,0.0061,408)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
    0.0092
    0.0092
    0.0058
    0.0058
  408.6522

The corresponding values of the functions being solved are as 
follows:

f =
   1.0e-12 *

    0.0000
    0.0000
   -0.0000
   -0.0000
    0.2558

T =
  408.6522

pct_conv =
   38.8149
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Listing 8. Execution of 24_Example_1 using the unconverged solution as a guess.

>> Example_24_1(0.008,0.008,0.015,0.015,508)

Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the default value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
    0.0004
    0.0004
    0.0146
    0.0146
  538.1711

The corresponding values of the functions being solved are as follows:

f =
   1.0e-12 *

   -0.0000
   -0.0000
    0.0000
    0.0000
   -0.1705

T =
  538.1711

pct_conv =
   97.6118
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