AFCoKaRE Practice Problem 23.1

Purpose: This problem will allow you to practice the quantitative analysis of a transient CSTR.

Problem Statement: A $150^{\circ} \mathrm{C}$ solution containing $2 \mathrm{~mol} \mathrm{~L}^{-1}$ of A is being to a 500 L CSTR at a rate of $250 \mathrm{~L} \mathrm{~h}^{-1}$. A jacket surrounding the CSTR contains a fluid at a constant temperature of $180^{\circ} \mathrm{C}$. The contact area between the CSTR contents and the jacket is $2 \mathrm{~m}^{2}$ and the overall heat transfer coefficient is equal to $500 \mathrm{kcal} \mathrm{m}^{-2} \mathrm{~h}^{-1} \mathrm{~K}^{-1}$. Within the reactor reaction (1) occurs at a rate given by equation (2). The preexponential factor for the rate coefficient in equation (2) is $1.14 \times 10^{9} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~h}^{-1}$ and the activation energy is $16.2 \mathrm{kcal} \mathrm{mol}^{-1}$. The reacting solution has a constant density and a constant heat capacity of $1.17 \mathrm{cal} \mathrm{mL}^{-1} \mathrm{~K}^{-1}$. The heat of reaction is $18.2 \mathrm{kcal} \mathrm{mol}^{-1}$ and is independent of temperature. At steady state at these conditions, the outlet temperature is $167^{\circ} \mathrm{C}$ and the conversion of A is 86%. Suppose that the temperature of the fluid in the jacket suddenly dropped to $160^{\circ} \mathrm{C}$. Calculate the temperature and conversion versus time until a new steady state is attained.

$$
\begin{align*}
& \mathrm{A} \rightarrow \mathrm{~B} \tag{1}\\
& r_{1}=k_{1} C_{A}^{2} \tag{2}
\end{align*}
$$

