
A First Course on Kinetics and Reaction Engineering

Example 23.2

Problem Purpose
This problem illustrates the analysis of the start-up of a CSTR.

Problem Statement
A 500 cm3 CSTR needs to be started up. It will operate adiabatically with a feed of 1.0 cm3 s-1 

containing equal amounts of A and B (0.015 mol cm-3) at 50 °C. The heat capacity of the fluid is 
essentially equal to that of the solvent, 0.35 cal g-1 K-1 and can be considered to be constant. The 

(constant) density of the fluid is 0.93 gm cm-3. The reaction of interest is given in equation (1). The 
standard heat of this reaction is constant and equal to -20 kJ mol-1. The rate expression is given in 

equation (2). For start-up purposes, the reactor will first be filled with pure solvent at 190 °C, and then a 
valve will be opened, admitting the feed. How long will it take for the reactor to reach 260 °C, and what 

will the conversion of A equal?
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Problem Analysis
This problem involves a CSTR, and the reaction kinetics are known, so it is a reaction engineering 

problem. The CSTR is being started-up, therefore it is a transient CSTR problem. Appropriate transient 

mole and energy balances will be written and solved, and the results will be used to answer the questions 

posed.

Problem Solution
This problem involves the transient operation of a CSTR. The schematic in Figure 1 represents the 

system just after the inlet flow has been initiated. Some of the quantities provided in the problem 

statement will need to be converted to different units so that all quantities are in a consistent set of units. 
One way to do this is to convert the inlet temperature from °C to K and to convert the fluid heat capacity 
and the activation energy from cal or kcal to J. By doing so all volumes will use cm3, all times will use s, 

all molar quantities will use mol and all energies will use J. The problem states that the reacting fluid has 

a constant density, so the outlet and inlet volumetric flow rates will be equal and constant. The reactor is 
full at the start of the transient, and so, the reaction volume will also be constant.
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1: A + B ⇄ Y + Z, r1 is given by equation (2)1: A + B ⇄ Y + Z, r1 is given by equation (2)1: A + B ⇄ Y + Z, r1 is given by equation (2)
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Figure 1. Schematic representation of the CSTR.

Mole balances can be written for each species present in the system. The generalized mole 
balance equation is given in equation (3). In this case, there is only one reaction taking place, so the 

summation reduces to a single term with j = 1. The fluid volume is constant (the reactor is full initially), as 

is the volumetric flow rate, so their derivatives with respect to time will equal zero. Applying these 
simplifications leads to equation (4).
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Writing this mole balance for each reactant and product then leads to equations (5) through (8).
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The general energy balance equation is given in equation (9). The heat term equals zero because 

the reactor is adiabatic and the work term is negligible. Instead of summing the individual heat capacities 
of the reagents, we can use the heat capacity of the fluid as a whole in this problem. However, that is 

provided as a mass heat capacity, so it will need to be multiplied by the total mass of the fluid, which, in 
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turn, is equal to the fluid volume times the fluid density. Also, the heat capacity is a constant allowing 
evaluation of the integral. The system involves a constant density liquid, and since the reactor is full at the 

start of the transient, the reaction volume will not change with time. Similarly, the pressure will be 
constant. This means that the derivatives of the reaction volume and the pressure with respect to time 

equal zero. There is only one reaction, so that summation consists of a single term. This results in the 
simplified energy balance given in equation (10), which was re-arranged so that only the derivative 

appears on the left side of the equals sign. There is no heat transfer fluid, so an energy balance on the 
heat transfer fluid is not used.
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The design equations (5) through (8) and (10)  constitute a complete model for the transient reactor. 

We can therefore use those design equations to analyze the start-up procedure described in the problem 
statement. To do so, we will need to solve the design equations; they are a set ordinary differential 

equations (ODEs). The independent variable is t, and the dependent variables are ṅA, ṅB, ṅY, ṅZ and T. 

The problem specification provides enough information to calculate the initial value of these dependent 
variables, so the design equations can be solved numerically using software for the solution of initial-

value ODEs. Supplemental Unit S5 provides a brief overview of how such software works. There are 
many software packages you can use in order to do this; you should pick the one you are most 

comfortable using. No matter what software you elect to use, you will need to provide three things as 
input to that software:

• the initial values of the independent and dependent variables

• the final value of either t or one of the dependent variables

• code that evaluates each of the derivatives given a value for t and values for each of the 

dependent variables along with the additional information provided in the problem specification

First let’s consider the initial values. At the beginning of the startup procedure described in the 

problem, the elapsed time is zero (t = 0), and at that time, the reactor contains only solvent. Therefore ṅA, 
ṅB, ṅY and ṅZ are each equal to zero at t = 0. (If the reactor contains only solvent, then there can’t be any 

A, B, Y or Z in the effluent.) The initial temperature is specified to equal 190 ºC in the problem statement, 
providing the last initial value.
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The second thing that must be provided in order to solve the design equations is either the final 

value of t or the final value of one of the dependent variables. In this problem, we are asked to calculate 

the time required to reach 260 °C, and the corresponding conversion of A. Thus the final condition for this 

analysis is that the temperature equals 260 °C.

The final thing that must be provided in order to solve the design equations numerically is code that 

evaluates each of the derivatives given values for the independent and dependent variables and the other 

information provided in the problem statement. Looking at the mole balances and the energy balance, the 

only quantities other than the dependent variables (ṅA, ṅB, ṅY, ṅZ and T) that appear on the right hand 

sides of those equations are the volumetric flow rate ( !V ), the reaction volume (V), the inlet molar flow 

rates (ṅA0, ṅB0, ṅY0 and ṅZ0), the reaction rate (r1), the fluid density (ρfluid), the fluid mass-specific heat 

capacity ( 
!Cp, fluid ), the inlet temperature (T0) and the heat of reaction (ΔH1(T)). All of these quantities, 

except the reaction rate, are known constants.

The reaction rate can be calculated using equation (2), which introduces the concentrations of A 

and B. It is trivial to calculate these using equations (11) and (12) since the moles of the species are 

dependent variables and will be given and the volumetric flow rate is a known constant specified in the 

problem statement.

 
CA =

!nA
!V

 (11)

 
CB =

!nB
!V

 (12)

At this point, all the input that is needed to solve the design equations numerically is available. 

Doing so will yield the final value of the remaining independent and dependent variables, in this case t, 
ṅA, ṅB, ṅY and ṅZ. With that information, the final conversion can be calculated using equation (13). Doing 

so reveals that the specified final temperature is reached in 1450 s and the corresponding conversion of 

A is 97.3 %.

 
fA =
!nA
0 − !nA
!nA
0  (13)

If you plot the outlet concentration of A versus time and the outlet temperature versus time, Figures 

2 and 3, you can see that the system appears to be approaching a steady state. Before it does, however, 
it displays some interesting transient behavior. This behavior is easy to understand. Initially as the 

reactant flows into the reactor, it mixes with the solvent and causes the temperature to drop since the 
feed is colder than the solvent. Then, as the concentration of A builds, the reaction rate increases, leading 

to the release of energy (since the reaction is exothermic) and causing the temperature to increase (since 
the reactor is adiabatic). As it does so, the amount of A within the reactor decreases due to the larger 

reaction rate.
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Figure 2. Outlet concentration of A vs. time. 
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Figure 3. Outlet temperature versus time.

Calculation Details Using MATLAB
If you elect to use MATLAB to solve the design equations, Supplemental Unit S5 provides template 

files that can be used. In this problem, the equations are initial value ODEs and the final value of a 
dependent variable is provided, so the appropriate template file is SolvIVDifD.m. Before that file can be 

used, you must make six required modifications. Here I will also describe a few non-required 
modifications that you might want to consider when solving problems of this type.

To begin, I made a copy of the template file and saved it as Example_23_2.m; a copy of that file 
accompanies this solution. Since the function name must match the filename, I changed the name of the 

function to Example_23_2. At the same time, knowing that I won’t need to use the results from these 
calculations in subsequent calculations, I changed the function so that it does not return any values. The 

template file begins with a long set of comments describing what it does and how to use it; I replaced 
these comments with a brief comment stating the purpose of the modified version. None of these 

modifications were required. As a result of making them, the beginning of the file looks as shown in 
Listing 1.

Listing 1. Non-required modifications made at the beginning of the template file.

The first required modification involves entering all the known quantities from the problem 

statement along with constants that will be needed (from handbooks or other reference sources). As 
these are entered, they should be converted to a consistent set of units. For this problem, I decided to 

use units of cm3, mol, s, K, J and g. At the same time, I calculated the constant inlet molar flow rates of A 
and B. Note, to avoid confusing inlet quantities with initial values, I used  an added “in” for the inlet 

quantities instead of an added “0”. These modifications are made immediately following the code in 

Listing 1, and they are shown in Listing 2.
The second required modification involves entering the code to evaluate the right hand side of the 

ODEs when they are written in the form shown in equation (14). Notice that the equations are provided as 
a vector quantity. Thus, it is necessary to map the dependent variables used in the problem statement 

(ṅA, ṅB, ṅY, ṅZ and T) to a vector z, and the corresponding derivatives are mapped to a vector dzdt. I find 

it useful at the start of the internal function that will evaluate the derivatives, to define local variables with 

the names used in the problem statement. This modification is not required, but in my opinion, it makes 
the code more readable and easier to debug. In addition, the resulting list of variables serves as a 

reminder of the mapping of the problem statement variables to the vector z. The required code next 

calculates the outlet concentrations of A and B and the rate according to equations (11), (12) and (2). It 

% Modified version of the MATLAB template file SolvIVDifI.m used in the
% solution of Example 23.2 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_23_2
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then evaluates the derivatives using equations (5) through (8) and (10), saving the results in the vector 

dzdt. The resulting code is shown in Listing 3.

dz
dt

= f z,t( )  (14)

Listing 2. Results of the first required modification.

Listing 3. Results of the second required modification.

The third required modification involves providing the initial values of the independent and 

dependent variables. The initial values of the dependent variables are entered as a vector named z0, and 

they must use the same mapping of the problem variables to the vector z0 as was used previously for z. 

    % Known quantities and constants (in consistent units)
    V = 500; % cm3
    VFR = 1; % cm3/s
    CAin = 0.015; % mol/cm3
    CBin = CAin;
    Tin = 50 + 273.15; % K
    cp = 0.35*4.1840; % J/g/K
    rho = 0.93; % g/cm3
    dH = -20000; % J/mol
    k0 = 3.24e12; % cm3/mol/s
    E = 25000*4.1840; % J/mol
    R = 8.31446; % J/mol/K
    Tout0 = 190 + 273.15; % K
    Toutf = 260 + 273.15; % K
    nYin = 0; % mol/s
    nZin = 0; % mol/s
    % Other calculated constants
    nAin = CAin*VFR; % mol/s
    nBin = CBin*VFR; % mol/s

 % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nB = z(2);
        nY = z(3);
        nZ = z(4);
        T = z(5);
        % Other variable quantities
        CA = nA/VFR;
        CB = nB/VFR;
        r = k0*exp(-E/(R*T))*CA*CB;
        % Evaluate the ODEs
        dzdt = [
            VFR/V*(nAin - nA - V*r)
            VFR/V*(nBin - nB - V*r)
            VFR/V*(nYin - nY + V*r)
            VFR/V*(nZin - nZ + V*r)
            (-VFR*rho*cp*(T-Tin) - V*r*dH)/(V*rho*cp)
        ];
    end % of internal function odeqns
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Recall that since the reactor initially contains only solvent at 190 ºC, the outlet flow rate of A, B, Y and Z 
are initially equal to zero since they are not present in the reactor. The results of performing this 

modification are shown in Listing 4.

Listing 4. Results of the third required modification.

The fourth and fifth required modifications involve providing the final value of one dependent 

variable, in this problem T. The first step (fourth modification) is to select a value for t_f that is much 

greater than the actual final time. Of course, you don’t know what the final time is at this point, so all you 

can do is set t_f to a large number. It is important to check the answer to make sure that the final time 

that is reported is smaller than this value; otherwise, you need to make this value larger and re-execute 

the function, Example_23_2. For this problem, I arbitrarily set t_f to 3000 s, so I’ll need to check the final  

time that is calculated and make sure it is less than 3000 s.

The second step (fifth modification) is to provide the final condition. Basically, this involves adding 

the code to calculate the value of a variable named stop_when. The variable, stop_when, should equal 

zero when the final condition is reached. Here the final condition we want to reach is that the outlet 

temperature should equal 260 ºC. When I entered the data from the problem statement, I used Toutf to 

represent this temperature. Hence, noting that z(5) is the outlet temperature, the final condition is given 

by equation (15). I can rearrange that equation so that there is a zero on the left-hand side as shown in 

equation (16). Clearly, the final condition will be reached when the right hand side of equation (16) equals 

zero. Therefore, for the fifth required modification, I set the variable stop_when equal to the right hand 

side of equation (16). The results of these two modifications are shown in Listing 5.

z 5( ) = Tout , f  (15)

0 = z 5( )−Tout , f  (16)

The sixth and final required modification is to use the results from solving the ODEs to calculate 

whatever the problem requested. The values of tf is calculated directly as t_f. The conversion can be 

calculated using equation (13), noting that z(1) is the final moles of A. The results of these modifications 

are shown in Listing 6.

    % Initial values
    t0 = 0;
    z0 = [
        0
        0
        0
        0
        Tout0;
    ];
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Once the file containing all the modifications had been saved, it was executed by typing 
Example_23_2 at the MATLAB command prompt. The resulting output is shown in Listing 7. An additional  

MATLAB file named Example_23_2_plot.m was also created to produce the plots shown as Figures 2 and 
3. The code in that file will not be discussed here; the primary difference is that a final value was chosen 

for the time, so the code is based on the template file SolvDifIVI.m, and it generates the plots as output.

Listing 5. Results of the fourth and fifth required modifications.

Listing 6. Results of the sixth required modification.

Listing 7. Results of executing the modified template file.

    tf = 3000; % Don't want to reach this value
    options = odeset('Events',@stop);
 [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);
    
    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        % final condition
        stop_when = z(5) - Toutf;
    end % of internal function stop

    % Report the required time and the conversion
    required_time = t_f
    conversion = (nAin - z(1))/nAin

>> Example_23_2

required_time =
   1.4507e+03

conversion =
    0.9734
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