
A First Course on Kinetics and Reaction Engineering

Example 23.1

Problem Purpose
This problem illustrates the transient analysis of a CSTR following a change in an operating 

parameter.

Problem Statement
Recall the isothermal 4430 cm3 steady-state chemostat that was analyzed in Example 22.3. It was 

fed a mixture of substrate and cells containing 0.04 g cm-3 of substrate and 8.0 x 10-5 g cm-3 of cell mass, 

and reached a steady state outlet cell mass concentration of 0.008 g cm-3 when the volumetric flow rate 
was 60 cm3 min-1. (Note: at these conditions, the steady state outlet mass flow of substrate is 1.35 g 

min-1.) The rate of cell growth is given by equation (1) and the effective stoichiometry is that 2.2 grams of 
substrate are consumed per gram of call mass produced. Determine what would happen if the cells were 

suddenly removed from the feed and comment upon what you find. Then repeat the analysis for the case 
where the inlet volumetric flow rate is 59 cm3 min-1.

r =
0.014 min-1( ) S[ ] X[ ]
0.001 g cm-3( ) + S[ ]  (1)

Problem Analysis
This problem involves a CSTR, and the reaction kinetics are known, so it is a reaction engineering 

problem. The problem begins with the CSTR operating at steady state and asks what would happen if an 

operating parameter (the inlet cell mass concentration) was changed, therefore it is a transient CSTR 
problem. The reactor operates isothermally, so the mass balances can be solved independently of the 
energy balance, and in this case, there isn’t sufficient information to write an energy balance. Therefore 

only the mass balance design equations will be solved to answer the question posed.

Problem Solution
Figure 1 shows a schematic representation of the reactor at the instant after the feed change has 

been made. The quantities provided in the problem statement are given in a consistent set of units, and 

they have been entered in the diagram. Notice that the inlet flows are all constant, and the reactor is 

already full at the time the transient begins. Since the reactor is already full at the start of the transient, 
the reaction volume is expected to be constant during the transient, and it is labeled accordingly in the 
schematic. Here it will be assumed that the fluid density is constant. With that assumption, the outlet 

volumetric flow rate will equal the inlet volumetric flow rate, and it, too, will be constant, as indicated in the 

schematic diagram.
At the steady state prior to the removal of the cell mass from the feed, Example 22.3 showed that 

the steady state outlet substrate mass flow rate was equal to 1.35 g min-1. The steady state outlet cell 
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mass concentration was 0.008 g cm-3 and the volumetric flow rate is 60 cm3 min-1; multiplying these two 
quantities shows that the steady state outlet cell mass flow rate was 0.48 g min-1. At the instant when the 

inlet cell mass concentration is set to zero and the transient response begins, there won’t have been any 
time for these outlet mass flows to have changed, so these are the initial values of the transient outlet 

mass flows, as indicated in the schematic.

1: 2.2 S → X, r1 is given by equation (1)1: 2.2 S → X, r1 is given by equation (1)1: 2.2 S → X, r1 is given by equation (1)

 

 

!V 0 = 60 cm3  min−1

!mX , in = 0 g min−1

!mS , in = !V
0CS

0

 

!V = 60 cm3  min−1

!mX t( ) =
!mX 0( ) = 0.48 g min−1

!mS t( ) =
!mS 0( ) = 1.35 g min−1

V = 4430 cm3V = 4430 cm3V = 4430 cm3

Figure 1. Schematic representation of the CSTR.

Mass balances can be written for each species present in the system; given the effective 

stoichiometry of the reaction, these equations are effectively the same as the mole balances derived in 
Unit 17 with mass flow rates replacing molar flow rates. The generalized mass balance is given by 

equation (2). In this case, there is only one reaction taking place, so the summation reduces to a single 

term with j = 1. As already noted, the reaction volume and the volumetric flow rate are each constant, so 

their derivatives with respect to time are equal to zero. As a result, the generalized mass balance 

simplifies to equation (3).

   

V
!V

d !mi

dt
+
!mi
!V

dV
dt

−
!miV
!V 2

d !V
dt

= !mi
0 − !mi +V ν i, jrj

j= all
reactions

∑  (2)

   
V
!V

d !mi

dt
= !mi

0 − !mi +Vν i,1r1  (3)

Writing this balance for X and for S in the standard form with only the derivative on the left of the 

equals sign leads to equations (4) and (5). In order to avoid confusing the inlet mass flows with the initial 

values of the outlet mass flows, the former have been denoted as ṁX,in and ṁS,in in equations (4) and (5). 

Equations (4) and (5) apply after the change in the inlet cell mass concentration, so ṁX,in is equal to zero.

   

d !mX

dt
=
!V

V
!mX ,in − !mX +Vr1( )  (4)

   

d !mS

dt
=
!V

V
!mS ,in − !mS − 2.2Vr1( )  (5)
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As noted in the problem analysis, the mass balances above will be solved independently of the 

energy balance. They are a set ordinary differential equations (ODEs). The independent variable is t, and 

the dependent variables are ṁX and ṁS. The problem specification provides enough information to 

calculate the initial values of these dependent variables, so the design equations can be solved 

numerically using software for the solution of initial-value ODEs. Supplemental Unit S5 provides a brief 
overview of how such software works. There are many software packages you can use in order to do this; 

you should pick the one you are most comfortable using. No matter what software you elect to use, you 
will need to provide three things as input to that software:

• the initial values of the independent and dependent variables

• the final value of either t or one of the dependent variables

• code that evaluates each of the derivatives given a value for t and values for each of the 

dependent variables along with the additional information provided in the problem specification, 

that is, when the equations are written with the derivatives on the left hand side, as in equations 

(4) and (5), code that evaluates the right hand side of the equations given ṁX and ṁS

First let’s consider the initial values. These are the values of the dependent variables, ṁX and ṁS, at 

the instant the inlet cell mass concentration is changed. At the instant the inlet cell mass concentration is 
changed, the outlet mass flows of X and S will still equal the steady state values from before the change, 

because there won’t have been any time for them to change, yet. At the steady state before the change, 
the outlet cell mass concentration was 0.008 g cm-3. Multiplying this outlet concentration by the volumetric  

flow rate gives the steady state outlet cell mass flow at the instant the inlet cell mass concentration was 
changed, equation (6). The problem states that the steady state outlet substrate mass flow was 1.35 g 

min-1, equation (7).

 !mX t = 0( ) = CX , ss before
!V = 100CX

0 !V  (6)

 !mS t = 0( ) = 1.35 g min-1  (7)

The second thing that must be provided in order to solve the design equations is either the final 

value of t or the final value of one of the dependent variables. In this problem, we are asked to describe 

the response of the system. To do so, a plot of the outlet cell mass flow rate versus time will be used. To 

make such a plot, a value of the elapsed time will be selected, and the equations will be solved to 

determine ṁX. Then a different value of the elapsed time will be selected, and the equations again will be 

solved to determine the corresponding value of ṁX. This will be repeated over a range of values of the 

elapsed time until the response stops changing, and the results will be plotted.

The final thing that must be provided in order to solve the design equations numerically is code that 
evaluates each of the derivatives given values for the independent and dependent variables and the other 

information provided in the problem statement. Looking at the mass balances, equations (4) and (5), the 

only quantities other than the dependent variables (ṁX and ṁS) that appear on the right hand sides of 
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those equations are the volumetric flow rate ( !V ), the reaction volume (V), the inlet mass flow rates (ṁX,in 

and ṁS,in) and the reaction rate (r1). All of these quantities, except the reaction rate, are known constants. 

The reaction rate can be computed using equation (1), which introduces two additional quantities: the 

outlet mass concentrations of X and S (CX and CS). By definition, these can be calculated using equations 

(8) and (9).

 
X[ ] = CX =

!mX
!V

 (8)

 
S[ ] = CS =

!mS
!V

 (9)

At this point, all the input that is needed to solve the design equations numerically is available. 

Doing so as described above and plotting the results yields Figure 2 when the volumetric flow rate is 
equal to 60 cm3 min-1.

Figure 2. Response of the CSTR to removal of the cell mass from the 60 cm3 min-1 feed.

Figure 2 shows that the response extends over a very long time (~40000 min), and that eventually 

no cell mass remains in the outlet. This condition is known as wash out. It happens because the reaction 
is autocatalytic. At the steady state before the cell mass is removed from the feed, the rate of flow of cell 
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mass into the reactor together with the rate of cell mass generation within the reactor just equals the rate 
of flow of cell mass out of the reactor. When the cell mass is removed from the feed, this steady state is 

disrupted. More cell mass is flowing out of the reactor than is being produced in the reactor. This leads to 
a decrease in the concentration of cell mass within the reactor, and since the reaction is autocatalytic, this 

in turn decreases the rate of production of cell mass. That further reduces the amount of cell mass within 
the reactor, and as a consequence, the flow of cell mass from the reactor decreases. The critical question 

is whether the outflow of cell mass decreases faster or slower than the rate decreases. In this situation, 
the rate of reaction decreases faster than the outflow of cell mass, leading to smaller and smaller cell 

mass concentrations in the reactor, with eventual washout of all of the cell mass.
The problem also asks us what would happen if the volumetric flow rate was 59 cm3 min-1 instead 

of 60 cm3 min-1. The first thing that must be recognized is that if the flow rate was 59 cm3 min-1, then the 
average residence time would be longer than with a flow rate of 60 cm3 min-1. As a consequence, the 

steady state outlet cell mass flow rate before the change in inlet concentration will be greater at a 
volumetric flow rate of 59 cm3 min-1 than at a flow rate of 60 cm3 min-1. Similarly, the steady state outlet 

substrate flow rate will be smaller at a volumetric flow rate of 59 cm3 min-1 than at a flow rate of 60 cm3 
min-1. Therefore, the initial values of the outlet mass flow rates will be different from the values used 

above.
Example 22.3 was therefore re-solved, but with the reaction volume equal to 4430 cm3 and with the 

outlet flow rate of cell mass unknown. The details will not be presented here, but the result was that the 
steady state outlet cell mass flow is 0.62 g min-1 and the outlet flow of substrate is 1.0 g min-1. The 

analysis described above was then repeated using these values as the initial values and using a 
volumetric flow rate of 59 cm3 min-1. The results are shown in Figure 3, where it can be seen that washout 

no longer occurs. Instead, the outlet cell mass falls to a new, non-zero steady state level. The reason for 
this difference can be explained as before. Removing the cell mass from the feed again leads to an 

imbalance where the outflow of cells is greater than the rate of their production. In this case, however, the 
decrease in cell mass within the reactor causes the outflow of cell mass to decrease more rapidly than 

the rate so that eventually they reach a point where steady state is re-established.
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Figure 3. Response of the CSTR to removal of the cell mass from the 59 cm3 min-1 feed.

Calculation Details Using MATLAB
If you elect to use MATLAB to solve the design equations, Supplemental Unit S5 provides template 

files that can be used. In this problem, the equations are initial value ODEs and the final value of the 
independent variable is provided, so the appropriate template file is SolvIVDifI.m. Before that file can be 

used, you must make four required modifications. Here I will also describe a few non-required 
modifications that you might want to consider when solving problems of this type.

To begin, I made a copy of the template file and saved it as Example_23_1.m; a copy of that file 
accompanies this solution. Since the function name must match the filename, I changed the name of the 

function to Example_23_1. At the same time, knowing that I won’t need to use the results from these 
calculations in subsequent calculations, I changed the function so that it does not return any values. 

However, I knew I’d want to run it for two different volumetric flow rates with their corresponding initial 
outlet mass flow rates, so I modified the function to accept the volumetric flow rate and the two initial 

outlet mass flow rates as arguments. The template file begins with a long set of comments describing 
what it does and how to use it; I replaced these comments with a brief comment stating the purpose of 

the modified version. None of these modifications were required. The first required modification involves 
entering all the known quantities from the problem statement along with constants that will be needed 

(from handbooks or other reference sources). As these are entered, they should be converted to a 
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consistent set of units. For this problem, I decided to use units of cm3, min and g. The result of making all 
these modifications is shown in Listing 1.

Listing 1. Initial comment, function declaration and known constants after modification of SolvIVDifI.m

The second required modification involves entering the code to evaluate the right hand side of the 

ODEs when they are written in the form shown in equation (10). Notice that the equations are provided as 

a vector quantity. Thus, it is necessary to map the dependent variables used in the problem statement (ṁX 

and ṁS) to a vector z, and the corresponding derivatives are mapped to a vector dzdt. I find it useful at 

the start of the internal function that will evaluate the derivatives, to define local variables with the names 
used in the problem statement. This modification is not required, but in my opinion, it makes the code 

more readable and easier to debug. In addition, the resulting list of variables serves as a reminder of the 

mapping of the problem statement variables to the vector z. The required code first calculates the two 

outlet mass concentrations that appear in the rate expression according to equations (8) and (9). 
Following that, the rate can be calculated using equation (1). Finally, the derivatives are evaluated using 

equations (4) and (5), saving the results in the vector dzdt. The resulting code is shown in Listing 3.

dz
dt

= f z,t( )  (10)

Listing 3. Results of the second required modification.

The third required modification involves providing the initial values of the independent and 

dependent variables and the final value of the independent variable. The initial values of the dependent 

% Modified version of the MATLAB template file SolvIVDifI.m used in the
% solution of Example 23.1 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_23_1(VFR, mXout0, mSout0)
    % Known quantities and constants (in consistent units)
    CS0 = 0.04; % g/cm3
    mSin = VFR*CS0; % g/min
    mXin = 0; % g/min
    V = 4.430e3; % cm3

 % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        mXout = z(1);
        mSout = z(2);
        CX = mXout/VFR;
        CS = mSout/VFR;
        r = 0.014*CS*CX/(0.001 + CS);
        dzdt = [
            VFR/V*(mXin - mXout + V*r)
            VFR/V*(mSin - mSout - 2.2*V*r)
        ];
    end % of internal function odeqns
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variables are entered as a vector named z0, and they must use the same mapping of the problem 

variables to the vector z0 as was used previously for z. The results of performing this modification are 

shown in Listing 4. A large value was selected for the final time so that the full evolution of the outlet cell 
mass flow could be plotted.

Listing 4. Results of the third required modification.

The fourth and final required modification is to use the results from solving the ODEs to calculate 

whatever the problem requested. In this case, code was added to plot the outlet cell mass flow versus 
elapsed time, as shown in Listing 5.

Listing 5. Results of the fifth required modification.

Once the file containing all the modifications had been saved, it was executed by typing 
Example_23_1(60, 0.48, 1.35) at the MATLAB command prompt. The three arguments are the values of 

the volumetric flow rate in cm3 min-1, the initial value of the outlet cell mass flow rate in g min-1 and the 
initial value of the outlet substrate mass flow rate in g min-1. Doing so generated Figure 2 as output; it was 

executed a second time using 59, 0.62 and 1.0 as the argument, leading to Figure 3. The code used to 
calculate the steady state outlet mass flow rates for a volumetric flow rate of 59 cm3 min-1 will not be 

discussed here, but it accompanies this solution as Example_23_1_ss.m. It is a simple modification of the 
code used in Example 22.3 with the only differences being that the reactor volume was known while the 

outlet flow of cell mass was not.

    % Initial and final values
    t0 = 0;
    z0 = [
        mXout0
        mSout0
    ];
    tf = 50000; % min

    % Plot the outlet cell mass flow versus time
    figure
    plot(t,zz(:,1))
    title(['Inlet Flow: ',num2str(VFR),' cm3/min'])
    xlabel('time (min)')
    ylabel('Outlet Cell Mass Flow (g/min)')
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