A First Course on Kinetics and Reaction Engineering Unit 23. Analysis of Transient CSTRs

Definitions

operating parameter - quantities that are directly controlled during the use of a reactor system response - change(s) or time variation of reactor variables following a change in one or more operating parameters
start-up - procedure used to get a reactor operating
shut-down - procedure used to terminate reactor operation

Nomenclature

$\Delta H_{j} \quad$ heat of reaction j
$v_{i, j} \quad$ stoichiometric coefficient of species i in reaction j; value is positive for products and negative for reactants
$\rho_{e} \quad$ density of the heat transfer fluid
$A \quad$ heat transfer area between the reaction volume and the heat transfer fluid
$\tilde{C}_{p, e} \quad$ mass-specific heat capacity of the heat transfer fluid
$\hat{C}_{p, i} \quad$ constant pressure specific molar heat capacity of species i
$P \quad$ pressure; a subscripted i denotes the partial pressure of species i
$\dot{Q} \quad$ net heat input into a reactor through its walls or the walls of a submerged heat transfer coil
$T \quad$ temperature; a subscripted e denotes the (external) temperature of the heat transfer media; a superscripted 0 denotes the inlet value
V reaction volume
$\dot{V} \quad$ volumetric flow rate; a superscripted zero denotes the value at the reactor inlet
$V_{e} \quad$ total volume of heat transfer fluid within the reactor jacket or cooling coil
$\dot{W} \quad$ net rate at which mechanical work is done by a reactor system on its surroundings through shafts and moving boundaries
$f \quad$ vector of functions for the calculation of the derivatives of the dependent variables with respect to time
$\dot{m} \quad$ mass flow rate of heat transfer fluid; a subscripted min indicates the minimum permissible flow rate
$\dot{n}_{i} \quad$ molar flow rate of species i; a superscripted zero denotes the value at the reactor inlet
$r_{j} \quad$ the generalized rate of reaction j
t time
$\underline{v e c t o r ~ c o n t a i n i n g ~ t h e ~ d e p e n d e n t ~ v a r i a b l e s ~ i n ~ t h e ~ d e s i g n ~ e q u a t i o n s ; ~ a ~ s u p e r s c r i p t e d ~ z e r o ~ d e n o t e s ~}$ the values at $t=0$

Equations

$$
\begin{align*}
& \frac{V}{\dot{V}} \frac{d \dot{n}_{i}}{d t}+\frac{\dot{n}_{i}}{\dot{V}} \frac{d V}{d t}-\frac{\dot{n}_{i} V}{\dot{V}^{2}} \frac{d \dot{V}}{d t}=\dot{n}_{i}^{0}-\dot{n}_{i}+V \sum_{\substack{j=\text { all } \\
\text { reactions }}} v_{i, j} r_{j} \tag{23.1}\\
& V\left(\sum_{\substack{i=a \mathrm{all} \\
\text { species }}} \frac{\dot{n}_{i} \hat{C}_{p-i}}{\dot{V}}\right) \frac{d T}{d t}-P \frac{d V}{d t}-V \frac{d P}{d t}=\dot{Q}-\dot{W}-\sum_{\substack{i=\text { all } \\
\text { species }}}\left(\dot{n}_{i}^{0} \int_{T^{0}}^{T} \hat{C}_{p-i} d T\right) \tag{23.2}\\
& -V \sum_{\substack{j=\text { all } \\
\text { reaction }}} r_{j} \Delta H_{j}(T) \\
& \frac{d T_{e}}{d t}=\frac{\dot{m} \tilde{C}_{p, e}\left(T_{e}^{0}-T_{e}\right)-\dot{Q}}{\rho_{e} V_{e} \tilde{C}_{p, e}} \tag{23.3}\\
& \frac{d \underline{y}}{d t}=\underline{f}(\underline{y}, t) ; \quad \underline{y}(t=0)=\underline{y}^{0} \tag{23.4}
\end{align*}
$$

