A First Course on Kinetics and Reaction Engineering Activity 22.1

In Example 20.2, the operation of a batch reactor was analyzed. Specifically, a coolant flow rate of $0.2 \mathrm{~kg} \mathrm{~min}^{-1}$ was selected to maximize the net rate of production of $\mathrm{B}\left(0.0153 \mathrm{~mol}_{\mathrm{min}}{ }^{-1}\right.$ including turnaround time) via reaction (1). Suppose that reactor is converted to a CSTR that operates with a space time equal to the total processing time of the two steps in the batch reactor operational protocol (63.8 $\min)$. That is, the feed to the CSTR has the same composition and temperature as the initial charge to the batch reactor (a 2 M solution of A at $23^{\circ} \mathrm{C}$), and the $20^{\circ} \mathrm{C}$ cooling water flows into the jacket at a rate of $0.2 \mathrm{~kg} \mathrm{~min}^{-1}$. What will the final temperature and outlet molar flow rate of B equal?

The rate expression for reaction (1) is given in equation (2). The heat of reaction (1) may be taken to be constant and equal to $-22,200 \mathrm{cal} \mathrm{mol}^{-1}$. The heat capacity of the reacting solution is approximately constant and equal to 440 cal $\mathrm{L}^{-1} \mathrm{~K}^{-1}$, and its density is constant. The reaction volume is 4 L , and the jacket volume is 0.5 L with a heat transfer area of $0.6 \mathrm{ft}^{2}$ and a heat transfer coefficient of $1.13 \times 10^{4} \mathrm{cal}$ $\mathrm{ft}^{-2} \mathrm{~h}^{-1} \mathrm{~K}^{-1}$. The cooling water may be taken to have a constant density of $1 \mathrm{~g} \mathrm{~cm}^{-3}$ and a constant heat capacity of $1 \mathrm{cal} \mathrm{g}^{-1} \mathrm{~K}^{-1}$.

$$
\begin{align*}
& \mathrm{A} \rightarrow \mathrm{~B} \tag{1}\\
& r_{1}=\left(2.59 \times 10^{9} \mathrm{~min}^{-1}\right) \exp \left(\frac{-16500 \mathrm{cal} \mathrm{~mol}^{-1}}{R T}\right) C_{A} \tag{2}
\end{align*}
$$

