
A First Course on Kinetics and Reaction Engineering

Example 22.1

Problem Purpose
This problem illustrates the quantitative analysis of a steady state CSTR.

Problem Statement
The rate of liquid-phase reaction (1) is adequately described by the rate expression given in 

equation (2). Reactant A is fed to a steady state CSTR at a rate of 0.01 lbmol min-1, and reactant B is fed 
at a rate of 0.25 lbmol min-1. This corresponds to an inlet volumetric flow rate of 0.08 ft3 min-1. The CSTR 

has a fluid volume of 18 ft3, and it operates adiabatically. The heat of reaction may be taken to be 
constant and equal to -1.7 x 104 BTU lbmol-1. The heat capacities of A, B and Z are equal to 1000, 180 

and 1200 BTU lbmol-1 °R-1, respectively, and they may be considered to be independent of temperature. 
What will the conversion and outlet temperatures equal if the combined feed enters at 600, 650 or 700 °R.

A + B ⇄ Z (1)

  

r1 = 1.2 ×  1014  ft3  lbmol-1  min-1( )exp −23000 °R
T

⎧
⎨
⎩

⎫
⎬
⎭

CACB

× 1−
CZ

6.5 ×  10-13  ft3  lbmol-1( )exp 20000 °R
T

⎧
⎨
⎩

⎫
⎬
⎭

CACB

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (2)

Problem Analysis
In this problem, a reaction is taking place in a CSTR and the kinetics of the reaction are known. 

Therefore it is a CSTR reaction engineering problem. The problem specifies that the reactor is operating 

at steady state. To model the system, a mole balance will be written for each reactant and product and an 
energy balance will be written for the reaction volume. Since the reactor is adiabatic, there is no heat 
transfer fluid, and consequently an energy balance on the heat transfer fluid is not needed. Thus the 

complete set of design equations for modeling the system comprise the mole balances and the energy 

balance on the reaction volume. Solving these equations will allow the calculation of the conversion and 
the outlet temperature for any set of operating parameters.

Problem Solution
Figure 1 shows a schematic representation of the reactor. The quantities provided in the problem 

statement are given in a consistent set of units, and they have been entered in the diagram. The reacting 
fluid is stated to be a liquid, and it will be assumed that the liquid density is constant. With this 
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assumption, the outlet volumetric flow rate will equal the inlet volumetric flow rate as indicated in the 
schematic diagram.

1: A + B D Z, r1 is given in equation (2)1: A + B D Z, r1 is given in equation (2)1: A + B D Z, r1 is given in equation (2)

   !V 0 = 0.08 ft3 min-1

T0 = 600, 650 or 700 °R

   !nA
0 = 0.01 lbmol min-1

   !nB
0 = 0.25 lbmol min-1

   !nZ
0 = 0 lbmol min-1

   !V = !V 0  (liquid)
T =

  

!nA =
!nB =
!nZ =

V = 18 ft3

  
!Q = 0

V = 18 ft3

  
!Q = 0

V = 18 ft3

  
!Q = 0

Figure 1. Schematic representation of the CSTR.

Mole balances can be written for each species present in the system. The generalized, steady state 

mole balance equation is given by equation (4). There is only one reaction taking place, so the summation 
reduces to a single term. Writing equation (4) once for each reactant and product in the system leads to 

equations (5) through (7).

   

0 = !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑  (4)

   
0 = !nA

0 − !nA +Vν A,1r1 = !nA
0 − !nA −Vr1  (5)

   
0 = !nB

0 − !nB +Vν B,1r1 = !nB
0 − !nB −Vr1  (6)

   
0 = !nZ

0 − !nZ +VνZ ,1r1 = !nZ
0 − !nZ +Vr1  (7)

The general, steady state energy balance is given by equation (8). The heat term equals zero 
because the reactor is adiabatic and the work term can be assumed to be negligible because there are no 

shafts or moving boundaries other than, possible, an agitator. The heat capacities are stated to be 
constant allowing evaluation of the integrals. Applying these simplifications results in the energy balance 

given in equation (9).
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0 = !nA

0Ĉp,A + !nB
0Ĉp,B + !nZ

0Ĉp,Z( ) T −T 0( ) +Vr1ΔH1 T( )  (9)

In order for the design equations (equations (5) through (7) and equation (9)) to be solved, the 

number of unknowns must equal the number of design equations, in this case four. Figure 1 indicates that 
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the three outlet molar flow rates and the outlet temperature are unknown, so they will be chosen as the 
unknown variables. In that case the three mole balances and the energy balance can be written as shown 

in equations (10) through (13).

   0 = f1 !nA, !nB , !nZ ,T( ) = !nA
0 − !nA −Vr1  (10)

   0 = f2 !nA, !nB , !nZ ,T( ) = !nB
0 − !nB −Vr1  (11)

   0 = f3 !nA, !nB , !nZ ,T( ) = !nZ
0 − !nZ +Vr1  (12)

   
0 = f4 !nA, !nB , !nZ ,T( ) = !nA

0Ĉp,A + !nB
0Ĉp,B + !nZ

0Ĉp,Z( ) T −T 0( ) +Vr1ΔH1 T( )  (13)

Equations (10) through (13) do not contain integrals or derivatives. As such, one could attempt to 
solve them manually, using symbolic algebra software or using numerical methods software. A variety of 

software packages are available for doing so, and you should use the one you feel most comfortable with. 
Supplemental Unit S2 presents a brief introduction to the numerical solution of sets of non-differential 

equations like these using numerical methods software. No matter what software package you use, you 
typically will need to provide two things as input in order to solve the equations:

• Code that evaluates the functions, f1 through f4 in equations (10) through (13), given values of the 

unknown variables, ṅA, ṅB, ṅZ and T
• A guess for the solution, that is, a guess for the values of ṅA, ṅB, ṅZ and T that cause all of the 

functions, f1 through f4, to equal zero

The functions to be evaluated contain quantities other than the four unknown variables. In order to 

evaluate the functions, values will be needed for each of those other quantities. Here the inlet molar flow 

rates (ṅA0, ṅB0, ṅZ0), the reaction volume (V), the heat capacities (Ĉp,A, Ĉp,B and Ĉp,Z), the inlet temperature 

(T0) and the heat of reaction (ΔH1(T)) are all known constants whose values are given in the problem 

statement.

The value of the rate (r1) will also be needed in order to evaluate the functions f1 through f4 in 

equations (10) through (13). The rate can be computed using equation (2), which introduces the 

concentrations of A, B and Z. Those concentrations can be calculated by expressing them in terms of the 
molar flow rates and the volumetric flow rate as in equations (14) through (16). The code that evaluates 

the functions will be given ṅA, ṅB and ṅZ, and the volumetric flow rate is another known constant.

 
CA =

!nA
!V

 (14)

  
CB =

!nB
!V

 (15)
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CZ =

!nZ
!V

 (16)

That is everything that is needed in order to evaluate the functions, f1 through f4. The only other 

thing that will be needed in order to solve the equations numerically is a guess for the values of the 

unknowns. Since all that is needed is a guess, one possibility is to use the inlet molar flow rates and 

temperature as the guess. With that, equations (10) through (13) can be solved numerically to find ṅA, ṅB, 

ṅZ and T. The problem asked for the conversion and the outlet temperature. The latter is found directly by 

solving the design equations. The fractional conversion can be computed using equation (17) once the 

design equations have been solved to obtain ṅA (ṅA0 is a known constant).

   
fA =

!nA
0 − !nA

!nA
0  (17)

Performing these calculations one finds for a feed temperature of 600 °R, the outlet temperature is 
602 °R and the conversion is 68%; for a feed temperature of 650 °R, the outlet temperature is 653 °R and 

the conversion is 95% and for a feed temperature of 700 °R , the outlet temperature is 703 °R and the 
conversion is 82%. That is, the conversion passes through a maximum as the feed temperature 

increases. This is expected when a reversible exothermic reaction takes place adiabatically. Initially as 
the temperature is increased, the rate increases and this leads to increased conversion. Eventually the 

conversion approaches the equilibrium conversion. Then, as the temperature increases, the conversion 
decreases because the equilibrium constant, and hence the equilibrium conversion, decreases. Thus, one 

would expect that there is an inlet temperature that will maximize the conversion in this situation.

Calculation Details Using MATLAB
Supplemental Unit S2 describes how to solve sets of non-differential equations numerically using 

MATLAB, and it provides a template file named SolvNonDif.m for doing so. Before it can be used to solve 

a problem, that template file must be modified in four places, each indicated by a comment that begins “% 
EDIT HERE”. In addition to those required modifications I made a few additional modifications that will be 

described here along with the required modifications.
I recommend that you work with a copy of the file that has been given a more meaningful name; I 

used Example_22_1.m. Since the function name must match the filename, I changed the name of the 
function to Example_22_1. At the same time, knowing that I won’t need to use the results from these 

calculations in subsequent calculations, I changed the function so that it does not return any values. 
However I know I will want to run it using different feed temperatures, so I additionally changed the 

function statement so that the feed temperature is passed in as an argument named T0. The template file 

begins with a long set of comments describing what it does and how to use it; I replaced these comments 

with a brief comment stating the purpose of the modified version. None of these modifications were 
required. As a result of making them, the beginning of the file looks as shown in Listing 1.
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Listing 1. Non-required modifications made at the beginning of the template file.

The first required modification is to enter the values of all universal and problem specific constants 

at the point indicated. At the same time these are entered, they should be converted to a consistent set of 
units. Listing 2 shows the next part of Example_22_1.m where these modifications were made.

Listing 2. Portion of the modified template file SolvNonDif.m where problem-specific and universal 
constants were entered in consistent units.

The second required modification involves entering the code to evaluate functions f1 through f4, 

equations (10) through (13). In the code, this occurs within an internal function named evalEqns; within 

evalEqns, both the unknowns and the equations are provided as vector quantities named z and f, 

respectively. Thus, it is necessary to map the variables used in the problem solution to represent the 

unknowns (ṅA, ṅB, ṅZ and T) to a vector z, and to return the values of the functions in the vector f. I find it 

useful at the start of the internal function that will evaluate the functions, to define local variables with the 

names used in the problem statement. This modification is not required, but in my opinion, it makes the 
code more readable and easier to debug. In addition, the list of variables here serves as a reminder of the 

mapping of the problem statement variables to the vector z.

Recall from the solution that the functions contained variable quantities (r1, CA, CB and CZ) that 

depend upon the unknowns. In the code being written here to evaluate the functions, we are given values 

of the unknowns as just described. Therefore, these variable quantities can be evaluated here using the 
equations given in the problem statement, specifically equations (4), (15), (16) and (2). The constants 

from the problem statement have already been entered and are available at this point in the MATLAB file, 

so the functions f1 through f4 can next be evaluated. The code containing all these modifications is shown 

in Listing 3.

% Modified version of the MATLAB template file SolvNonDif.m used in the
% solution of Example 22.1 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_22_1(T0)

    % Known quantities and constants (in consistent units)
    VFR = 0.08; % ft3/min
    nA0 = 0.01; % lbmol/min
    nB0 = 0.25; % lbmol/min
    nZ0 = 0; % lbmol/min
    V = 18; % ft3
    CpA = 1000; % BTU/lbmol/degR
    CpB = 180; % BTU/lbmol/degR
    CpZ = 1200; % BTU/lbmol/degR
    dH = -1.7e4; % BTU/lbmol
    k0 = 1.2e14; % ft3/lbmol/min
    EoverR = 23000; % degR
    K0 = 6.5e-13; % ft3/lbmol
    HoverR = 20000; % degR
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Listing 3. Portion of the modified template file SolvNonDif.m showing the entry of the code to evaluate the 
functions being solved.

The third required modification is where guesses for the unknowns are provided. The guesses are 

entered in the array named z_guess. They must be entered using the same mapping of the unknowns to 

the vector z as was used above. The previous modification, where variables with more meaningful names 

were defined, serves as a key to remind you which variable is z1, which is z2, and so on. As noted in the 

problem solution, one possibility for a guess is to simply use the inlet values of ṅA, ṅB, ṅZ and T, and that 

is what is done in Listing 4.

Listing 4. Portion of the modified template file SolvNonDif.m where guesses are provided for the 
unknowns.

The final required modification only applies if you need to use the results from solving the set of 

equations to calculate other quantities. In this case, the problem asked for the conversion of A, which can 
be calculated using equation (17). Listing 5 shows the code that was used to do this; it also prints out the 

value of the temperature separately from the other unknowns, since the problem also asked for its value.

Listing 5. Portion of the modified template file SolvNonDif.m where the results of solving the set of non-
differential equations are used to calculate additional quantities.

    % Function that evaluates the equations
    function f = evalEqns(z)
        % mapping of unknowns into vector z
        nA = z(1);
        nB = z(2);
        nZ = z(3);
        T = z(4);
        % calculate variables quantities
        CA = nA/VFR;
        CB = nB/VFR;
        CZ = nZ/VFR;
        r1 = k0*exp(-EoverR/T)*CA*CB*(1-CZ/(K0*exp(HoverR/T)*CA*CB));
        f = [
            nA0 - nA - V*r1
            nB0 - nB - V*r1
            nZ0 - nZ + V*r1
            (nA0*CpA + nB0*CpB + nZ0*CpZ)*(T - T0) + V*r1*dH
        ];
    end % of internal function evalEqns

    % guesses for the solution
    z_guess = [
        nA0
        nB0
        nZ0
        T0
    ];

    % Report the results
    T = z(4)
    pct_conv = 100*(nA0-z(1))/nA0
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At this point, the modified template file can be used to solve the equations. To do so, the function 
name is typed at the MATLAB command prompt, with a feed temperature (in ºR) as an argument within 

parentheses following the function name. Numerical methods for solving non-differential equations don’t 
always converge to an acceptably accurate final answer (see Supplemental Unit S2 for more reasons 

why and what to do if this happens). Therefore, you should always examine the output from MATLAB 
closely; it should indicate that the equations were solved. If it doesn’t, then you need to determine why a 

solution was not obtained. In addition, you should check the values of the functions that are calculated 
using the final solution and printed. These should all be close to zero if the solution is accurate.

In the present problem, accurate solutions are found for each of the feed temperatures specified. 
Listing 6 shows the output from MATLAB for a feed temperature of 700 ºR.

Listing 6. Output from the execution of Example_22_1.m for a feed temperature of 700 ºR.

>> Example_22_1(700)

Equation solved, fsolve stalled.

fsolve stopped because the relative size of the current step is less than the
default value of the step size tolerance squared and the vector of function values
is near zero as measured by the default value of the function tolerance.

<stopping criteria details>

The solver found the following values for the unknowns:

z =
    0.0018
    0.2418
    0.0082
  702.5288

The corresponding values of the functions being solved are as follows:

f =
   1.0e-10 *

    0.0000
    0.0000
   -0.0000
    0.4957

T =
  702.5288

pct_conv =
   81.8139
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