A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

	Nomenclature
ΔH_{j}	heat of reaction j
$v_{i, j}$	stoichiometric coefficient of species i in reaction j; value is positive for products and negative for reactants
A	heat transfer area between the reaction volume and the heat transfer fluid
C_{i}	molar concentration of species i
$\tilde{C}_{p, e}$	mass-specific heat capacity of the heat transfer fluid
$\hat{C}_{p, i}$	constant pressure specific molar heat capacity of species i
P	pressure; a subscripted i denotes the partial pressure of species i
\dot{Q}	net heat input into a reactor through its walls or the walls of a submerged cooling coil
R	ideal gas constant
$S_{1 / j}$	selectivity ($\mathrm{mol} i$ per mol j)
T	temperature; a superscripted 0 denotes the inlet temperature; a subscripted e denotes the (external) temperature of the heat transfer media
U	overall heat transfer coefficient for heat transfer through the wall of a tubular reactor
V	reaction volume
\dot{V}	volumetric flow rate; a superscripted zero denotes the value at the reactor inlet
\dot{W}	net rate at which mechanical work is done by a reactor system on its surroundings through shafts and moving boundaries
f_{i}	fractional conversion of species i or a mathematical function that does not include derivatives or integrals
\dot{m}	mass flow rate of heat transfer fluid
\dot{n}_{i}	molar flow rate of species i; a superscripted zero denotes the value at the reactor inlet
r_{j}	the generalized rate of reaction j

Equations

$$
\begin{equation*}
0=\dot{n}_{i}^{0}-\dot{n}_{i}+V \sum_{\substack{j=a l l \\ \text { reactions }}} v_{i, j} r_{j} \tag{22.1}
\end{equation*}
$$

$$
\begin{aligned}
& 0=\sum_{\substack{i=a l l \\
\text { species }}}\left(\dot{n}_{i}^{0} \int_{T^{0}}^{T} \hat{C}_{p i} d T\right)+V \sum_{\substack{j=a l l \\
\text { reacions }}} r_{j} \Delta H_{j}(T)-\dot{Q}+\dot{W} \\
& 0=\dot{m}_{C_{p, e}}\left(T_{e}^{0}-T_{e}\right)-\dot{Q} \\
& \dot{Q}=U A\left(T_{e}-T\right) \\
& P_{i}=\frac{\dot{n}_{i}}{\sum_{k=\text { all species }} \dot{n}_{k}} P \\
& C_{i}=\frac{\dot{n}_{i}}{\dot{V}} \\
& \dot{V}=\dot{V}^{0} \\
& \dot{V}=\frac{R T\left(\sum_{k=\text { all species }}\right)}{P} \quad \text { (constant density liquid) } \\
& \left.\dot{n}_{k}\right) \\
& \dot{n}_{i}=\dot{n}_{i}^{0}\left(1-f_{i}\right) \\
& \dot{n}_{i}=S_{i / j} \dot{n}_{j} \\
& 0=f_{1}\left(z_{1,} z_{2}, \cdots, z_{n}\right) \\
& 0=f_{2}\left(z_{1}, z_{2}, \cdots, z_{n}\right) \\
& \vdots \\
& 0=f_{n}\left(z_{1}, z_{2}, \cdots, z_{n}\right)
\end{aligned}
$$

