
A First Course on Kinetics and Reaction Engineering

Example 20.1

Problem Purpose
This example shows how to analyze a multi-step operational protocol for a batch reactor.

Problem Statement
The rate expression for reaction (1) is given in equation (2). The heat of reaction (1) may be taken 

to be constant and equal to -22,200 cal mol-1. A jacketed, perfectly mixed batch reactor is charged with 4 
L of a 2 M solution of A at 23 ºC. The heat capacity of the solution is approximately constant and equal to 

440 cal L-1 K-1, and its density is constant. A controller maintains a constant pressure in the reactor 
headspace. The jacket volume is 0.5 L with a heat transfer area of 0.6 ft2 and a heat transfer coefficient of 

1.13 x 104 cal ft-2 h-1 K-1. Initially there is no flow to the jacket, but it is filled with water, also at 23 ºC; the 
water may be taken to have a constant density of 1 g cm-3 and a constant heat capacity of 1 cal g-1 K-1. A 

heating coil with a heat transfer coefficient of 3.8 x 104 cal ft-2 h-1 K-1 and a heat transfer area of 0.23 ft2 is 
submerged in the reacting solution.

A → B (1)

r1 = 2.59 ×109  min−1( )exp −16500 cal mol−1

RT
⎛
⎝⎜

⎞
⎠⎟
CA  (2)

In the first step of the operating protocol, saturated steam at 120 ºC is admitted to the coil. This step 

continues until the reaction volume reaches a temperature of 50 ºC. At that point, the steam flow to the 
coil is shut off and cooling water at 20 ºC starts to flow into the jacket at a rate of 0.5 kg min-1. This 
continues until the reaction volume reaches a temperature of 25 ºC. At that point, the reactor is drained 

and preparations for processing the next batch begin. If the turnaround time for the reactor is 25 min, 

what is the net rate of production of B?
In analyzing the first step of this protocol, you should account for heat transfer between the coil and 

the reacting fluid and between the reacting fluid and the jacket. In the second step, you may assume that 

any heat transfer between the reacting fluid and the coil is negligible. You may also assume that the 

jacket is perfectly mixed throughout both steps of the protocol.

Problem Analysis
The problem describes an operational protocol for a batch reactor that consists of two steps: a 

heating step and a cooling step. To answer the question posed, mole and energy balances will be written 

and solved for each of the processing steps. The reactor jacket contains a perfectly mixed heat transfer 
fluid, and in that situation, the temperature of the heat transfer fluid may change as the reaction 
progresses. Therefore, energy balances will need to be written for the heat transfer fluid in each step, and 

solved simultaneously with the other design equations for that step.
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Problem Solution
This problem involves the same reaction and reactor as Example 19.3, where only the cooling step 

was analyzed and the initial conditions were different. Recall from that example that the general mole 
balance for a batch reactor is given in equation (3), and that writing this equation for A and for B leads to 

equations (4) and (5).

dni
dt

=V ν i, jrj
j=all

reactions

∑  (3)

dnA
dt

= −Vr1  (4)

dnB
dt

=Vr1  (5)

The general energy balance on the reaction volume is given in equation (6). As discussed in 
Example 19.3, the work term, the derivative of the volume with respect to the time and the derivative of 

the pressure with respect to time are negligible, and the summation of the molar heat capacities can be 
replaced by the overall volume-specific heat capacity of the solution, leading, after rearrangement, to 

equation (7). After rearrangement, a general energy balance on the heat transfer fluid takes the form of 
equation (8), again, as shown in Example 19.3.

 

!Q − !W = dT
dt

niĈp,i( )
i=all
species

∑ +V rjΔH j( )
j=all

reactions

∑ −V dP
dt

− P dV
dt

 (6)

 

dT
dt

=
!Q −VΔH1r1
V
⌢
Cp,soln

 (7)

 

dTe, jacket
dt

=
!m "Cp,e Te

0 −Te( )−UjacketAjacket Te, jacket −T( )
ρeVe "Cp,e

 (8)

Analysis of the first processing step. In the first processing step, there are two heat input terms, 

one corresponding to heat transfer from the coil to the reaction volume, equation (9) and the other 
corresponding to heat transfer from the jacket to the reaction volume, equation (10). Physical reasoning 

reveals that the latter heat flow will be negative (i. e. from the reaction volume to thejacket). In addition, 

there is no flow of coolant into the jacket, so ṁ in equation (8) is equal to zero. Making these substitutions 

results in the set of design equations given in equations (11) through (14) as the model for the first 

processing step.

 
!Qcoil =UcoilAcoil Te,coil −T( )  (9)
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!Qjacket =UjacketAjacket Te, jacket −T( )  (10)

dnA
dt

= −Vr1  (11)

dnB
dt

=Vr1  (12)

 

dT
dt

=
UcoilAcoil Te,coil −T( ) +UjacketAjacket Te, jacket −T( )−VΔH1r1

V
⌢
Cp,soln

 (13)

 

dTe, jacket
dt

=
−UjacketAjacket Te, jacket −T( )

ρeVe !Cp,e

 (14)

The problem specification provides enough information to calculate the initial value of the 

dependent variables, so the design equations can be solved numerically using software for the solution of 
initial-value ODEs. Supplemental Unit S5 provides a brief overview of how such software works. There 

are many software packages you can use in order to do this; you should pick the one you are most 
comfortable using. No matter what software you elect to use, you will need to provide three things as 

input to that software:
• the initial values of the independent and dependent variables

• the final value of either t or one of the dependent variables

• code that evaluates each of the derivatives (i. e. the right side of equations (11) through (14)) 

given a value for t and values for each of the dependent variables along with the additional 

information provided in the problem specification

At the start of this processing step, the elapsed time for this step is, of course, equal to zero. The 

reaction volume is initially charged with a solution containing only A at a concentration, CA0, of 2M. 

Therefore the initial moles of A are found using equation (15) and the initial moles of B is equal to zero. 
The initial temperature of the reaction volume and of the fluid in the jacket are equal to 23 ºC. Thus, the 

initial values of the independent and dependent variables are known.

nA0 = CA0 V (15)

This processing step continues until the reaction volume reaches a temperature of 50 ºC. Since the 

temperature of the reaction volume is one of the dependent variables, this can be used directly as the 
final value.

The third thing that we need to provide in order to solve the design equations (11) through (14) 

numerically is code to evaluate the right hand side of those equations, given values for t, nA, nB, T and 

Te,jacket along with any other information from the problem statement or reference books. Looking at the 

right hand sides of equations (11) through (14), the reaction volume, heat transfer coefficients, heat 
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transfer areas, densities, heat capacities, heat of reaction and coil temperature are all constants; the only 
additional variable quantity is the rate of reaction. That can be calculated using equation (2), where the 

ideal gas constant is a known constant and the temperature will be given. That leaves only the 
concentration of A to be determined, and that is easily calculated using equation (16) since the moles of 

A will be given and the reaction volume is a known constant.

CA =
nA
V

 (16)

We now have everything we need in order to solve the design equations numerically. Doing so we 

Find that the reaction volume reaches 50 ºC in approximately 3.9 minutes at which time it contains 7.77 

moles of A and 0.23 moles of B. The temperature of the water in the jacket has risen to 35.3 ºC at the end 
of this step. Figure 20.1 shows the concentration of A in the reaction volume as a function of elapsed time 
during the first step and Figure 20.2 shows the temperatures of the reaction volume and coolant.

Figure 20.1. Variation in the concentration of A during the first processing step.
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Figure 20.2. Variation in the reaction volume temperature and the coolant temperature during the first 
processing step.

Analysis of the second processing step. In the second processing step there is only heat 

transfer between the reaction volume and the coolant in the jacket, so equation (10) alone is used for the 

heat input. In addition, there is coolant flowing into the jacket during the second step, so ṁ is not equal to 

zero. With these changes, the design equations take the form shown in equations (17) through (20).

dnA
dt

= −Vr1  (17)

dnB
dt

=Vr1  (18)

 

dT
dt

=
UjacketAjacket Te, jacket −T( )−VΔH1r1

V
⌢
Cp,soln

 (19)

 

dTe, jacket
dt

=
!m "Cp,e Te

0 −Te( )−UjacketAjacket Te, jacket −T( )
ρeVe "Cp,e

 (20)

Once again, these equations will be solved numerically. At the start of this processing step, the 

elapsed time for the step is zero. The initial values of the dependent variables are equal to their values at 

A First Course on Kinetics and Reaction Engineering

AFCoKaRE, Example 20.1 5



the end of the first step (nA0 = 7.77 moles, nB0 = 0.23 moles of B, T = 50 ºC and Te,jacket = 35.3 ºC). The 

final condition for the second processing step is that the temperature of the reaction volume is equal to 25 
ºC. We’ve already discussed how to calculate everything on the right hand side of the design equations 

except ṁ, which is a known constant. Therefore, at this point we can solve the equations numerically. 

Doing so, we find that the second processing step takes 76.9 min and at the end, the reaction volume 
contains 3.6 moles of A and 4.4 moles of B. Figure 20.3 shows how the concentration of A varies during 

the second step, and Figure 20.4 shows how the reaction temperature and the coolant temperature vary.

Figure 20.3. Variation in the concentration of A during the second processing step.
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Figure 20.4. Variation in the reaction volume temperature and the coolant temperature during the second 
processing step.

The net rate of production of B, accounting for the processing time for each step as well as the 

turnaround time, can be calculated using equation (21). The operating protocol described in the problem 
statements leads to a net rate of production of B of 0.01 mol B per min.

rB,net =
nB
f − nB

0

tstep 1 + tstep 2 + tturnaround
 (21)

Calculation Details Using MATLAB
The design equations for each of the processing steps are initial value ordinary differential 

equations, and in both steps the final value of a dependent variable is known. Supplemental Unit S5 

describes how to solve this type of equation numerically and provides template files for doing so. For this 
problem, the appropriate template file is SolvIVDifD.m. I elected to make two copies of this file and modify 
one of them, named Example_20_1_a.m, to solve the design equations for the first processing step and 

the second, named Example_20_1_b.m, to solve the design equations for the second processing step. I 

then wrote a third function that calls each of the first two and uses the results to calculate the net rate of 
production of B. The third file is named Example_20_1.m; all three files accompany this solution.
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Each copy of SolvIVDifD.m needed to be modified in six places in order to use it to solve the 
equations for this problem. In addition, I made a few additional modifications which I’ll describe here, as 

well. In order to model the first processing step, the function name was changed to Example_20_1_a and 
the initial comment was changed to describe the purpose of the modified file. The first required 

modification was to enter all of the constant quantities from the problem statement. While entering these 
quantities, they were changed so that the units were consistent (cal, mol, K, min, ft2, kg and L), and I also 

calculated the initial moles of A and the final temperature, since they, too, are constant. The results of all 
these modifications are shown in Listing 1.

Listing 1. Resulting code after the first set of modifications for the first processing step..

The second and third required modifications involved entering code to evaluate the the right hand 
side of the ODEs, equations (11) through (14), and provide the initial values. The equations are provided 

as a vector quantity, and so, it is necessary to map the dependent variables used in the problem 

statement (nA, nB, T and Te) to a vector z, and the corresponding derivatives are mapped to a vector 

dzdt. I find it useful at the start of the internal function that will evaluate the derivatives, to define local 

variables with the names used in the problem statement. This modification is not required, but in my 

opinion, it makes the code more readable and easier to debug. In addition, the list of variables here 

serves as a reminder of the mapping of the problem statement variables to the vector z. The rate was 

calculated next, as described in the problem solution, and the results were saved in the vector dzdt. The 

% Modified version of the MATLAB template file SolvIVDifD.m used in the
% solution of Example 20.1 of "A First Course on Kinetics and Reaction
% Engineering." This function models the first step of the operational
% protocol described in that example.
%
function [t_f,z] = Example_20_1_a
    % Known quantities and constants (cal, mol, K, min, ft2, kg, L)
    k0 = 2.59e9; % min-1
    E = 16500; % cal/mol
    R = 1.987; % cal/mol/K
    dH = -22200; % cal/mol
    V = 4; % L
    CA0 = 2; % mol/l
    nA0 = CA0*V; % mol
    Te_coil = 120 + 273.15; % K
    Te0_jacket = 23 + 273.15; % K
    cp = 440; % cal/L/K
    Ve = 0.5; %L
    A_jacket = 0.6; % ft2
    U_jacket = 1.13e4/60; % cal/ft2/min/K
    A_coil = 0.23; % ft2
    U_coil = 3.8e4/60; % cal/ft2/min/K
    rho = 1; % kg/L
    cpe = 1000; % cal/kg/K
    T0 = 23 + 273.15; % K
    Tf = 50 + 273.15; % K
    m = 0; % kg/min (no cooling water flowing)
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initial values are similarly stored in a vector named z0. The results of these modifications are shown in 

Listing 2.

Listing 2. Resulting code after the second set of modifications for the first processing step..

The fourth and fifth required modifications involve providing the final value of one dependent 

variable, in this problem T. The first step (fourth required modification) is to select a value for t_f that is 

much greater than the actual final time. Of course, you don’t know what the final time is at this point, so all 

you can do is set t_f to a large number. It is important to check the answer to make sure that the final 

time that is reported is smaller than this value; otherwise, you need to make this value larger and repeat 

the calculations. For this problem, I arbitrarily set t_f to 5000 min, so I’ll need to check the final time that 

is calculated and make sure it is less than 5000 min.
The second step (fifth required modification) is to provide the final condition. Basically, this involves 

adding the code to calculate the value of a variable named stop_when. The variable, stop_when, 

should become equal to zero when the final condition is reached. Here the final condition we want to 

reach is that the temperature of the reaction volume should equal 50 ºC. When I entered the data from 

the problem statement, I used Tf to represent this concentration. Hence, noting that z(3) is the 

temperature of the reaction volume, the final condition is given by equation (22). I can rearrange that 
equation so that there is a zero on the left-hand side as shown in equation (23). Clearly, the final condition 

will be reached when the right hand side of equation (23) becomes equal to zero. Therefore, for the fifth 

required modification, I set the variable stop_when equal to the right hand side of equation (23). The 

results of the fourth and fifth modifications are shown in Listing 5.

 % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nB = z(2);
        T = z(3);
        Te_jacket = z(4);
        r1 = k0*exp(-E/R/T)*nA/V;
        Q = U_jacket*A_jacket*(Te_jacket-T)+U_coil*A_coil*(Te_coil-T);
        dzdt = [
            -r1*V
            r1*V
            (Q-V*dH*r1)/V/cp
            (m*cpe*(Te0_jacket-Te_jacket)-U_jacket*A_jacket*(Te0_jacket-

T))/rho/Ve/cpe
        ];
    end % of internal function odeqns
        
    % Initial values
    t0 = 0.0;
    z0 = [
        nA0
        0
        T0
        Te0_jacket
    ];
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z 3( ) = Tf  (22)

0 = Tf − z 3( )  (23)

Listing 3. Results of the fourth and fifth required modifications.

The sixth and final required modification is to use the results from solving the ODEs to calculate 

whatever the problem requested. The problem did not ask for any information beyond the solution of the 
ODEs for this step, but I decided to generate a set of plots like those in Example 19.3. The results of 

these modifications are shown in Listing 4.

Listing 4. Results of the sixth required modification.

The modifications to the second file are similar and won’t be described here in detail. One 
significant change was that the function was modified so that the initial values of the dependent variables 

could be passed in as an argument. The variable z0 was used to receive the argument, and therefore the 

section of the code where one normally made a required modification to set the values of z0 was simply 

deleted. The remaining modifications are similar to those made in the first file; they can be examined by 
opening the file Example_20_1_b.m that accompanies this solution.

Finally, a short function was written to integrate the two processing steps and perform the final 
calculation of the net rate of production of B. This function first calls Example_20_1_a. It then takes the 

resulting values of the dependent variables and calls Example_20_1_b using them as an argument. 
Finally, it calculates the total processing time, not including turnaround time, and the net rate of production 

    tf = 5000.0;
    options = odeset('Events',@stop);
 [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);
    
    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        
        stop_when = Tf - z(3);
    end % of internal function stop

    % Plot CA vs. t
    CA = zz(:,1)/V;
    figure
    plot(t,CA)
    title(['Coolant flow = ',num2str(m),' kg/min'])
    xlabel('t (min)')
    ylabel('CA (M)')
    % Plot Te and T vs. t
    figure
    plot(t,zz(:,3),t,zz(:,4))
    title(['Coolant flow = ',num2str(m),' kg/min'])
    xlabel('t (min)')
    ylabel('T (K)')
    legend('Reactor','Jacket')
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of B and displays them. The code is shown in Listing 5. When it is run, it generates the plots shown in this 
solution and produces the output shown in Listing 6.

Listing 5. Contents of the function Example_20_1.

Listing 6. Output from the execution of Example_20_1.

% Function to solve the design equations for Example 20.1 from "A First
% Course on Kinetics and Reaction Engineering" for both steps of the
% operating protocol
function Example_20_1
    % Solve the design equations for the first step
    [t_step1,z_step1] = Example_20_1_a;
    
    % Solve the design equations for the second step
    [t_step2,z_step2] = Example_20_1_b(z_step1);
    
    % Report the results
    display(['Total processing time (min): ',num2str(t_step1+t_step2)])
    net_rate = z_step2(2)/4/(t_step1 + t_step2 + 25);
    display(['Net rate of B production (mol/min): ',num2str(net_rate)])
    
end % of Example_20_1

>> Example_20_1
Total processing time (min): 80.7676
Net rate of B production (mol/min): 0.010311
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