AFCoKaRE Practice Problem 19.2

Purpose: This problem will allow you to practice the quantitative analysis of a batch reactor.

Problem Statement: An adiabatic batch reactor with a volume of $15 \mathrm{ft}^{3}$ is initially charged with a $650^{\circ} \mathrm{R}$ solution containing A at a concentration of $0.125 \mathrm{lbmol}_{\mathrm{ft}}{ }^{-3}$ and B at a concentration of $3 \mathrm{lbmol} \mathrm{ft}^{-3}$. Reaction (1) occurs with a rate given by equation (2) wherein $k_{0}=1.2 \times 10^{14} \mathrm{ft}^{3} \mathrm{Ibmol}^{-1} \mathrm{~min}^{-1}, E / R=23000^{\circ} \mathrm{R}, K_{0}=6.5 \times 10^{-13} \mathrm{ft}^{3} \mathrm{Ibmol}^{-1}$ and $\Delta H / R=-20000^{\circ} \mathrm{R}$. The heat of reaction (1) is constant and equal to -170,000 BTU Ibmol^{-1}. The heat capacity of the solution may be taken to equal $135 \mathrm{BTU}^{\circ} \mathrm{R}^{-1} \mathrm{ft}^{-3}$, independent of temperature. The density of the liquid may be assumed to be constant. Calculate the concentration of Z and the temperature after 2 h of operation.

$$
\left.\begin{array}{l}
\mathrm{A}+\mathrm{B} \rightleftarrows \mathrm{Z} \\
r_{1}=k_{0} \exp \left\{\frac{-E}{R T}\right\} C_{A} C_{B}\left(1-\frac{C_{Z}}{K_{0} \exp \left\{\frac{-\Delta H}{R T}\right\} C_{A} C_{B}}\right. \tag{2}
\end{array}\right)
$$

