AFCoKaRE Practice Problem 19.2

<u>*Purpose*</u>: This problem will allow you to practice the quantitative analysis of a batch reactor.

Problem Statement: An adiabatic batch reactor with a volume of 15 ft³ is initially charged with a 650 °R solution containing A at a concentration of 0.125 lbmol ft⁻³ and B at a concentration of 3 lbmol ft⁻³. Reaction (1) occurs with a rate given by equation (2) wherein $k_0 = 1.2 \times 10^{14}$ ft³ lbmol⁻¹ min⁻¹, E/R = 23000 °R, $K_0 = 6.5 \times 10^{-13}$ ft³ lbmol⁻¹ and $\Delta H/R = -20000$ °R. The heat of reaction (1) is constant and equal to -170,000 BTU lbmol⁻¹. The heat capacity of the solution may be taken to equal 135 BTU °R⁻¹ ft⁻³, independent of temperature. The density of the liquid may be assumed to be constant. Calculate the concentration of Z and the temperature after 2 h of operation.

$$A + B \rightleftharpoons Z \tag{1}$$

$$r_{1} = k_{0} \exp\left\{\frac{-E}{RT}\right\} C_{A} C_{B} \left(1 - \frac{C_{Z}}{K_{0} \exp\left\{\frac{-\Delta H}{RT}\right\}} C_{A} C_{B}\right)$$
(2)