
A First Course on Kinetics and Reaction Engineering

Example 19.2

Problem Purpose
This problem illustrates the analysis of a single step in the operational protocol for a perfectly mixed 

batch reactor, including the treatment of the derivative of the total pressure with respect to time when the 
reacting fluid is an ideal gas.

Problem Statement
The rate of gas phase reaction (1) is given by the rate expression, equation (2). The pre-

exponential factor, k0,1, is equal to 265 L mol-1 min-1, and the activation energy, E1, is equal to 73 kJ mol-1. 

The standard heat of reaction (1) at 298 K is equal to -165 kJ mol-1. The heat capacities of A, Y and Z are 
given by equations (3) through (5), where the temperature must be substituted in K, and the resulting heat 

capacity will have units of J mol-1 K-1.
If the reaction takes place in a constant volume, adiabatic batch reactor that is initially charged with 

pure A at 1000 Torr and 1225 K, how long will it take for the temperature to increase by 10 K and at that 
point what percentage of the original A will have been converted? How long will it take for the temperature 

to increase by 100 K and at that point what percentage of the original A will have been converted?

2A → 2Y + Z (1)

r1 = k0,1 exp
−E1
RT

⎧
⎨
⎩

⎫
⎬
⎭
CA
2  (2)

Ĉp,A = 28 + 0.05T  (3)

Ĉp,Y = 26 + 0.01T  (4)

Ĉp,Z = 30 + 0.005T  (5)

Problem Analysis
The reactor is a batch reactor; the reactions taking place and their corresponding rate expressions 

are provided, so this is a reaction engineering problem. Mole balance design equations will be written for 
each reactant and product, and an energy balance will be written for the reactor. Solving those equations 

will provide the answers to the questions posed in the problem statement.

Problem Solution
In order to model this system, a mole balance design equation for each of the three reagents (A, Y 

and Z) and an energy balance design equation will need to be written. The general mole balance design 

equation is given in equation (6) and the general energy balance design equation is given in equation (7).
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i=all
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j=all

reactions

∑ −V dP
dt

− P dV
dt

 (7)

The summation in equation (6) includes only one term since there is only one reaction taking place. 

Noting that the stoichiometric coefficients of A, Y and Z are -2, 2 and 1, respectively, equation (6) can be 
written once for each species, yielding equations (8) through (10).

dnA
dt

= −2Vr1  (8)

dnY
dt

= 2Vr1  (9)

dnZ
dt

=Vr1  (10)

The energy balance design equation, equation (7), can be simplified by noting that the reactor is 

adiabatic ( 
!Q = 0 ), the work term is negligible, and the fluid volume is constant and equal to the total 

reactor volume (and hence its derivative with respect to time is equal to zero). Making these substitutions  

and expanding the summations leads to equation (11).

0 = nAĈp,A + nYĈp,Y + nZĈp,Z( ) dTdt +Vr1ΔH1 −V
dP
dt

 (11)

In order to solve a set of ordinary differential equations (ODEs), the number of dependent variables 

should equal the number of equations. At present we have four ODEs (equations (8) through (11)) that 

contain derivatives of five dependent variables (nA, nY, nZ, T and P). To address this, the derivative of the 

total pressure with respect to time will be re-written using the ideal gas law, equation (12). Noting that the 

gas constant and the reaction volume are constant, the derivative of the pressure with respect to time can 
be obtained by taking the derivative of equation (12), leading, as shown, to equation (13).

P = ntotRT
V

= nk
k  = all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
RT
V

 (12)

dP
dt

= R
V

dT
dt

nk
k  = all
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⎛
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⎜
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⎠

⎟
⎟
+ T dnk
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 (13)

The mole balance design equations, equations (8) through (10), can be substituted for the 
derivatives of the moles of the reactants and products appearing in the final term of equation (13), leading 

to equation (14). Substitution of equation (14) into the energy balance, equation (11), gives equation (15), 

which can be rearranged to give equation (16).

dP
dt

=
R nA + nY + nZ( )

V
dT
dt

⎛
⎝⎜

⎞
⎠⎟ +

RT
V

−2Vr1 + 2Vr1 +Vr1( )

dP
dt

=
R nA + nY + nZ( )

V
dT
dt

⎛
⎝⎜

⎞
⎠⎟ + RTr1  (14)

0 = nAĈp,A + nYĈp,Y + nZĈp,Z( ) dTdt +Vr1ΔH1 − R nA + nY + nZ( ) dT
dt

− RTVr1  (15)

dT
dt

=
−Vr1 ΔH1 − RT( )

nA Ĉp,A − R( ) + nY Ĉp,Y − R( ) + nZ Ĉp,Z − R( )( )  (16)

Upon reading through the problem statement, we can see that only intensive quantities are 

provided. Therefore, we are free to choose a basis for the calculation. Here it will be convenient to choose 
the reaction volume as the basis, equation (17).

V = 1 L (assumed basis) (17)

At this point we have four ODEs, equations (8) through (10) and (16) that contain four dependent 

variables. Specifically, the independent variable is t, and the dependent variables are nA, nY, nZ and T. 

These design equations represent a complete model for the batch reactor as described in the problem 

statement. The problem specification provides enough information to calculate the initial value of the 
dependent variables, so the design equations can be solved numerically using software for the solution of 

initial-value ODEs. Supplemental Unit S5 provides a brief overview of how such software works. There 
are many software packages you can use in order to do this; you should pick the one you are most 

comfortable using. No matter what software you elect to use, you will need to provide three things as 
input to that software:

• the initial values of the independent and dependent variables

• the final value of either t or one of the dependent variables

• code that evaluates each of the derivatives given a value for t and values for each of the 

dependent variables along with the additional information provided in the problem specification 

or found in handbooks or other reference volumes
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Let’s begin by considering the initial values. At the start of the processing step described in the 

problem, the elapsed time for that step is zero (t = 0). The problem also notes that at that time, the only 

species present in the reactor is A. Therefore nY, and nZ are each equal to zero at t = 0. The initial moles 

of A are not specified, but the pressure (P0 = 1000 Torr) and temperature (T0 = 1225 K) are, and that 

information can be used to calculate the initial moles of A using the ideal gas law, equation (18), and the 

reaction volume chosen as the basis for the calculations. As just noted, the initial temperature is specified 
to equal 1225 K in the problem statement, providing the last initial value.

  
nA t = 0( ) = nA

0 = P0V
RT 0  (18)

The second thing that must be provided in order to solve the design equations is either the final 

value of t or the final value of one of the dependent variables. In this problem, we are asked to calculate 

the final time, so that clearly is not given. Instead, we are asked to calculate the time required for the 
temperature to increase by 10 K and by 100K. Since we know the initial temperature to be 1225 K, that 
means the final temperature is 1235 in the first case and 1325 K in the second case.

The final thing that must be provided in order to solve the design equations numerically is code that 

evaluates each of the derivatives (i. e. the right hand sides of equations (8) through (10) and (16)) given 
values for the independent and dependent variables and the other information provided in the problem 
statement. Looking at the mole balances, the only quantities that appear on the right hand sides of those 

equations are the reaction volume, the value of which was selected as the basis for the calculation and 

the rate of the reaction. The rate can be calculated using equation (2); the pre-exponential factor, 
activation energy and ideal gas constant are given in the problem statement or known. The temperature is 
one of the dependent variables, so it will be given. The only other quantity is the concentration of A, and 

that is trivial to calculate using equation (19) since the moles of A is a dependent variable and will be 

given.

CA =
nA
V

 (19)

In order to write code to evaluate the derivative of the temperature with respect to time, equation 

(16), we will need to first calculate the heat of reaction and the heat capacities. (The calculation of the 

rate was just discussed; nA, nY, nZ and T are dependent variables and therefore their values will be given; 

the volume was chosen as the basis for the calculations and the gas constant is known.) The heat 

capacities can be calculated using equations (3) through (5) since the temperature will be given. The heat 

of reaction depends upon the temperature. As discussed in Unit 2, the heat of reaction can be calculated 

from the standard heat at 298 K (given in the problem statement) and the heat capacities as shown in 

equation (20). Writing the heat capacities as 
  
Ĉp,i = ai + biT  and substituting into equation (20) along with 

the stoichiometric coefficients leads to equation (21) 
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ΔH j
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ΔH1
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298K

T

∫ + 2 Ĉp−Y dT
298K

T

∫ − 2 Ĉp−A dT
298K

T

∫

  
ΔH1

0 T( ) = ΔH1
0 298 K( ) + aZ + bZT( )dT

298K

T

∫ + 2 aY + bYT( )dT
298K

T

∫ − 2 aA + bAT( )dT
298K

T

∫

  

ΔH1
0 T( ) = ΔH1

0 298 K( ) + aZ + 2aY − 2aA( ) T − 298 K( )
+

bZ + 2bY − 2bA( )
2

T 2 − 298 K( )2( )  (21)

Thus, at this point we can write code to evaluate the derivatives, so all the input that is needed to 

solve the design equations numerically is available. Doing so will yield the final value of the remaining 

independent and dependent variables, in this case t, nA, nY and nZ. The resulting values can be used to 

calculate the percentage of A that was converted using equation (22) (the final time is found directly and 

does not need to be calculated).

fA,% = nA
0 − nA
nA
0 100%( )  (22)

Upon performing the calculations, one finds that it takes 1.45 min for the temperature to rise by 10 

K, at which time 0.79% of the A has been converted, and it takes 12.1 min for the temperature to rise by 
100 K at which time 7.88% of the A has been converted.

Calculation Details Using MATLAB
If you elect to use MATLAB to solve the design equations, Supplemental Unit S5 provides template 

files that can be used. In this problem, the equations are initial value ODEs and the final value of a 
dependent variable is provided, so the appropriate template file is SolvIVDifD.m. Before that file can be 

used, you must make six required modifications. 
To begin, I made a copy of the template file and saved it as Example_19_2.m; a copy of that file 

accompanies this solution. Since the function name must match the filename, I changed the name of the 
function to Example_19_2. At the same time, knowing that I won’t need to use the results from these 

calculations in subsequent calculations, I changed the function so that it does not return any values. 
However, I noted that I would need to perform the calculations for two different temperature rises, so I 

changed the function so that the temperature rise is passed in as an argument. The template file begins 
with a long set of comments describing what it does and how to use it; I replaced these comments with a 

brief comment stating the purpose of the modified version. None of these modifications were required. As 
a result of making them, the beginning of the file looks as shown in Listing 1.
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Listing 1. Non-required modifications made at the beginning of the template file.

The first required modification involves entering all the known quantities from the problem 

statement along with constants that will be needed (from handbooks or other reference sources). As 

these are entered, they should be converted to a consistent set of units. For this problem, I decided to 

use units of L, mol, min, K, J and Torr. Notice that I entered the coefficients in equations (3) through (5) as 

constants ai and bi (
  
Ĉp,i = ai + biT ). After the given constants had been entered, I also calculated the 

initial moles of A, equation (18), and the final temperature, since these are also constant quantities. These 

modifications were made immediately following the code in Listing 1, and they are shown in Listing 2.

Listing 2. Results of the first required modification.

The second required modification involves entering the code to evaluate the right hand side of the 

ODEs when they are written in the form shown in equation (23). The equations were written in that form in 
the problem solution above, but here the equations are provided as a vector quantity. Thus, it is 

necessary to map the dependent variables used in the problem statement (nA, nY, nZ and T) to a vector z, 

and the corresponding derivatives are mapped to a vector dzdt. I find it useful at the start of the internal 

function that will evaluate the derivatives, to define local variables with the names used in the problem 
statement. This modification is not required, but in my opinion, it makes the code more readable and 

easier to debug. In addition, the list of variables here serves as a reminder of the mapping of the problem 

statement variables to the vector z. Here the heat capacities, heat of reaction and rate are first calculated 

% Modified version of the MATLAB template file SolvIVDifD.m used in the
% solution of Example 19.2 of "A First Course on Kinetics and Reaction
% Engineering."
%
function Example_19_2(deltaT)

    % Known quantities and constants (in L, mol, min, J, K, Torr)
    k0 = 265;
    E = 73000;
    dH298 = -165000;
    P0 = 1000;
    T0 = 1225;
    R = 8.314;
    % Constants for heat capacities
    aA = 28;
    aY = 26;
    aZ = 30;
    bA = 0.05;
    bY = 0.01;
    bZ = 0.005;
    V = 1; % basis
    nA0 = P0*V/(62.36367*T0); % Ideal gas law
    Tf = T0 + deltaT;
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as described previously in this solution. The derivatives are then evaluated using equations (8) through 

(10) and (16), saving the results in the vector dzdt. The resulting code is shown in Listing 3.

dz
dt

= f z,t( )  (23)

Listing 3. Results of the second required modification.

The third required modification involves providing the initial values of the independent and 

dependent variables. The only variable requiring calculation is the initial moles of A which is calculated 

using equation (17). The initial values of the dependent variables are entered as a vector named z0, and 

they must use the same mapping of the problem variables to the vector z0 as was used previously for z. 

The results of performing this modification are shown in Listing 4.

Listing 4. Results of the third required modification.

The fourth and fifth required modifications involve providing the final value of one dependent 

variable, in this problem T. The first step (fourth modification) is to select a value for t_f that is much 

greater than the actual final time. Of course, you don’t know what the final time is at this point, so all you 

can do is set t_f to a large number. It is important to check the answer to make sure that the final time 

that is reported is smaller than this value; otherwise, you need to make this value larger and repeat the 

 % Function that evaluates the ODEs
    function dzdt = odeqns(t,z)
        nA = z(1);
        nY = z(2);
        nZ = z(3);
        T = z(4);
        cpA = aA + bA*T;
        cpY = aY + bY*T;
        cpZ = aZ + bZ*T;
        dH = dH298 + (aZ + 2*aY - 2*aA)*(T-298) + 0.5*(bZ + 2*bY - 

2*bA)*(T^2-298^2);
        r = k0*exp(-E/R/T)*(nA/V)^2;
        dzdt = [
           -2*V*r
           2*V*r
           V*r
           -V*r*(dH - R*T)/(nA*(cpA-R) + nY*(cpY-R) + nZ*(cpZ-R));
        ];
    end % of internal function odeqns

    % Initial values
    t0 = 0.0;
    z0 = [
        nA0
        0
        0
        T0
    ];
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execution of the function, Example_19_2. For this problem, I arbitrarily set t_f to 100,000 min, so I’ll 

need to check the final time that is calculated and make sure it is less than 100,000 min.

The second step (fifth modification) is to provide the final condition. Basically, this involves adding 

the code to calculate the value of a variable named stop_when. The variable, stop_when, should equal 

zero when the final condition is reached. Here the final condition we want to reach is that the temperature 

should equal 1325 K. When I entered the data from the problem statement, I used Tf to represent this 

final temperature. Hence, noting that z(4) represents the temperature, the final condition is given by 

equation (24). I can rearrange that equation so that there is a zero on the left-hand side as shown in 

equation (25). Clearly, the final condition will be reached when the right hand side of equation (25) equals 

zero. Therefore, for the fifth required modification, I set the variable stop_when equal to the right hand 

side of equation (25). The results of these two modifications are shown in Listing 5.

z(4) = Tf (24)

0 = Tf − z(4) (25)

Listing 5. Results of the fourth and fifth required modifications.

The sixth and final required modification is to use the results from solving the ODEs to calculate 

whatever the problem requested. Here all that is required is the calculation of the conversion according to 
equation (22). The results of these modifications are shown in Listing 6.

Listing 6. Results of the sixth required modification.

Once the file containing all the modifications had been saved, it was executed by typing 

Example_19_2(10) at the MATLAB command prompt. This caused the calculations for the first part to be 
carried out. The function was then executed a second time with an argument of 100 to perform the 

calculations for the second part of the question. The resulting output is shown in Listing 7.

    tf = 100000;
    options = odeset('Events',@stop);
 [t, zz, te, ze, ie] = ode45(@odeqns,[t0, tf],z0,options);
    % NOTE: For stiff equations replace ode45 with ode15s
    
    % Function that provides the integration stopping criterion
    function [stop_when, isterminal, direction] = stop(t,z)
        isterminal = 1;
        direction = 0;
        
        stop_when = Tf - z(4);
    end % of internal function stop

    t_f_min = t_f
    T_f = z(4)
    pct_converted = 100*(nA0 - z(1))/(nA0)
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Listing 7. Results of executing the modified template file.

>> Example_19_2(10)

t_f_min =

    1.4513

T_f =

        1235

pct_converted =

    0.7929

>> Example_19_2(100)

t_f_min =

   12.1776

T_f =

        1325

pct_converted =

    7.8781
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