# A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors 

vector containing the dependent variables in the design equations; a superscripted zero denotes the values at $t=0$

## Equations

$$
\begin{align*}
& \frac{d n_{i}}{d t}=V \sum_{\substack{j=\text { all } \\
\text { reacions }}} v_{i, j} r_{j}  \tag{19.1}\\
& \dot{Q}-\dot{W}=\frac{d T}{d t} \sum_{\substack{i=\text { all } \\
\text { species }}}\left(n_{i} \hat{C}_{p, i}\right)+V \sum_{\substack{j=\text { all } \\
\text { reacions }}}\left(r_{j} \Delta H_{j}\right)-V \frac{d P}{d t}-P \frac{d V}{d t}  \tag{19.2}\\
& P=\frac{R T \sum_{\substack{k=\text { all } \\
\text { species }}} n_{k}}{V} \Rightarrow \quad \frac{d P}{d t}=\frac{R}{V}\left\{\left(\frac{d T}{d t} \sum_{\substack{k=\text { all } \\
\text { species }}} n_{k}\right)+\left(T \sum_{\substack{k=\text { all } \\
\text { species }}} \frac{d n_{k}}{d t}\right)\right\}  \tag{19.3}\\
& \dot{Q}=U A\left(T_{e}-T\right)  \tag{19.4}\\
& \dot{Q}=\dot{m}_{\text {min }}\left(\Delta \tilde{H}_{v}\left(T_{e}\right)\right)  \tag{19.5}\\
& \dot{m} \tilde{C}_{p, e}\left(T_{e}^{0}-T_{e}\right)-\dot{Q}=\rho_{e} V_{e} \tilde{C}_{p, e} \frac{d T_{e}}{d t}  \tag{19.6}\\
& \frac{d \underline{y}}{d t}=\underline{f}(\underline{y}, t) ; \quad \underline{y}(t=0)=\underline{y}^{0}  \tag{19.7}\\
& k_{j}=k_{0, j} \exp \left\{\frac{-E_{j}}{R T}\right\}  \tag{19.8}\\
& C_{i}=\frac{n_{i}}{V}  \tag{19.9}\\
& P_{i}=\frac{n_{i}}{\sum_{\substack{k=\text { all } \\
\text { species }}} n_{k}} P  \tag{19.10}\\
& =\frac{R T \sum_{\substack{k=\text { all } \\
\text { species }}} n_{k}}{V}  \tag{19.11}\\
& \hat{C}_{p i}=A_{i}+B_{i} T+C_{i} T^{2}+D_{i} T^{3}+\frac{E_{i}}{T^{2}} \tag{19.12}
\end{align*}
$$

