
A First Course on Kinetics and Reaction Engineering

Unit 17. Reactor Models and Reaction Types

Overview
The focus of Part II of this course was the modeling of reaction rates. This unit is the introduction to 

Part III where chemical reaction engineering is the focus. It introduces two primary reaction engineering 
activities: the design of reactors that are yet to be built and the modeling of reactors that already exist. 

The purposes and goals for these activities differ, but both utilize reaction engineering at their core. The 
reactors considered in Part III of the course are the same three ideal reactor types as were used in the 

generation of kinetics data. However, when these reactor types are used in commercial processes, their 
operation is not constrained as it was during kinetics studies. In other words, commercial process reactors 

need not operate at steady state, isothermally, without pressure drop, etc. For this reason, more rigorous 
design equations are needed in order to accurately model commercial process reactors, and these design 

equations are derived in this unit. In addition, having spent time examining reaction kinetics in Part II of 
the course, it is useful to identify typical types of chemical reactions, to consider the “typical” kinetic 

behavior of chemical reactions and to classify certain atypical behaviors here in this introductory unit. This 
is so because certain classes of reactions are better suited to certain types of reactors. In addition, if one 

has a general feel for the kinetic behavior of a reaction, then one can qualitatively assess how a given 
type of reactor will perform when running that reaction. This can be particularly useful to a practicing 

engineer who is called upon when something unexpected happens during a reaction process. It allows 
the engineer to identify likely causes for the unexpected behavior and to rule out other causes without 

having to write out and solve equations.

Learning Objectives
Upon completion of this unit, you should be able to define, in words, the following terms:

• Auto-thermal reactions

• Auto-catalytic reactions
• Reactant-inhibited reactions

• Product-inhibited reactions
• Series reaction networks

• Parallel reaction networks
• Series-parallel reaction networks 

Upon completion of this unit, you should be able to perform the following specific tasks and be able to 
recognize when they are needed and apply them correctly in the course of a more complex analysis:

• State the two objectives of reaction engineering
• List examples of engineering tasks that utilize reaction engineering models

• Explain that reactors must be optimized in the context of the overall chemical process in which they 
appear
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• Identify the mole, energy and momentum balances for ideal batch reactors, ideal CSTRs and ideal 
PFRs

• Simplify the mole, energy and, if appropriate, momentum balances  for cases where the flow 
reactor (CSTR or PFR) operates at steady state

• Identify input, output, accumulation and generation terms in the mole, energy and momentum 
balances for ideal batch reactors, ideal CSTRs and ideal PFRs, and describe their physical 

significance
• Derive and simplify design equations for reactors that are similar to the ideal reactors

• Describe the effects of temperature, reactant concentration and product concentration upon the rate 
of a typical reaction

• Discuss the thermal effects associated with exothermic and endothermic reactions, both reversible 
and irreversible

Information
Reaction engineering entails the formulation and use of accurate mathematical models of chemical 

reactors. The objectives of reaction engineering are (i) to construct accurate mathematical models of real 
world reactors and (ii) to use those models to perform some engineering task. There are several such 

tasks in which the reaction engineering model might be employed. One is to simulate the effect of some 
change in operating procedure in order to determine how it will affect production, energy consumption, 

etc. Another is in process simulation and optimization where the reactor is one part of a much larger 
model and that larger model is being used to find the most efficient and profitable way to operate the 

overall process. Reaction engineering models can also be used to construct computer programs to 
control a chemical process so that the reactor operates at the conditions for which it was designed. Those 

tasks involve modeling of an existing reactor system. Reactor design is an engineering task where the 
purpose is to specify a new reactor and how it should be operated in order to produce some product or 

products.
The three idealized reactor models, perfectly mixed batch, CSTR and PFR, can be used to model a 

surprisingly large number of commercial reactors as long as we remove the restrictions we used when 
studying kinetics in Part II of this course. Here, in Part III, we will consider reaction engineering using 

these three idealized model types. Then, in Part IV, we will examine models for some selected reactors 
that cannot be accurately represented using the ideal reactor models.

Before beginning our study of reaction engineering it is important to put it in the proper context. In 
this course, we will concentrate primarily on the first of the two objectives mentioned above: construction 

of accurate mathematical models of reactors that are used for commercial chemical processing. Doing so 
can create a false impression for first time students because this approach ignores the fact that in almost 

all cases a commercial chemical reactor is one part of a larger overall process. In a course like this one, 
our narrow focus can leave the impression that the second objective mentioned above, using the model 

to perform some engineering task, involves only the reactor model, and that perspective is incorrect. 
Chemical processes are operated for the purpose of making a financial profit, and therefore the goal of 
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most of the engineering tasks that use the reaction engineering models is to maximize the rate of profit of 
the process, not of the reactor. The key point to recognize is that the reactor must efficiently integrate into 

the overall process; it is not a stand-alone item. For example, it might not be possible to have an 
absolutely pure feed to the reactor because that would make the cost of reactant purification prohibitive. It 

might be necessary to limit the temperature of the products so that downstream separation processes can 
accommodate them. The amount of material to be processed in the reactor may be limited by the capacity 

of an upstream or downstream process, and so on. 
As such, reaction engineering can be thought of as a form of constrained optimization. The 

optimization involves creating a process that maximizes the rate of financial profit. The constraints come 
from a variety of sources including safety, cost, operability, ability to integrate into the overall process and 

so on. For the reactor portion of the overall process, some of the key factors to be considered when 
performing reaction engineering include operability and reliability of the reactor, energy usage by the 

reactor, space time yield (rate of product generation per volume of the reactor) and selectivity. Even within 
this reactor-focused group of factors there are tradeoffs, e. g. getting acceptable selectivity may require 

lower space time yield. For a general rule of thumb, in reaction engineering the objective is often to 
generate the desired product as fast as possible, with the highest selectivity possible, using as little 

energy as possible and in as small a reactor volume as possible while maintaining reliability, operability, 
environmental compatibility and safety.

Industrial chemical reactors can be large, complex pieces of equipment. Nonetheless, a great many 
industrial reactors can be modeled with reasonable accuracy as either a perfectly mixed batch reactor, a 

CSTR or a PFR. For the purpose of analyzing kinetic data the reactors were assumed to be isothermal 
and in the case of the flow reactors to operate at constant pressure and at steady-state. For the most 

part, it also was assumed that only a single reaction was taking place. In most cases it would require a lot 
of effort to make an industrial reactor run isothermally, and rarely is there any compelling reason for doing 

so. Additionally, it is common for more than one chemical reaction to take place in an industrial reactor. As 
such, it is necessary to derive the design equations for each of the three ideal reactor types without 

making these assumptions. The starting point, in each case, is a balance equation,either on the moles of 
one particular species or on energy, which takes the general form of equation (17.1)

INPUT + GENERATION = OUTPUT + ACCUMULATION (17.1)

Mole balance (on an arbitrary species i) for a perfectly mixed batch reactor. We begin with the 

balance equation.

INPUT + GENERATION = OUTPUT + ACCUMULATION

By definition, no material enters or leaves the system during a batch reaction, so the input and 

output terms are zero.

GENERATION = ACCUMULATION
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We exclude nuclear reactions, so the only way moles of species i can be generated is by chemical 

reaction. In general, there can be any number of reactions, j, and species i could be a reactant or a 

product in any of those reactions. Letting rj denote the generalized rate of reaction j (as defined in Unit 4), 

the rate of generation of species i, per unit fluid volume, is equal to νi,jrj where νi,j is the stoichiometric 

coefficient of species i in reaction j. If we assume that there is a single fluid in which all reactions take 

place, then the total rate of generation of species per unit fluid volume is equal to ν i, jrj
all j
∑ . The reactor is 

perfectly mixed, and therefore the rate is the same anywhere within the reaction volume. Therefore, the 

total generation of moles of species i is equal to V ν i, jrj
all j
∑  where we have further assumed that every 

reaction rate has been normalized per unit fluid volume.

 V ν i, jrj
j=all

reactions

∑ = ACCUMULATION

Finally, we simply note that the instantaneous accumulation of moles of species i is just 
dni
dt

. This 

leads to the complete mole balance on species i in a perfectly mixed batch reactor, equation (17.2), 

where the equation has been rearranged so that the derivative is on the left hand side. A mole balance of 

this type can be written for each species present in the system.

dni
dt

=V ν i, jrj
j=all

reactions

∑  (17.2)

Energy balance for a perfectly mixed batch reactor. Once again, we begin with the general 
balance equation.

INPUT + GENERATION = OUTPUT + ACCUMULATION

While no mass enters or leaves the batch reactor during the reaction, it is possible for energy to 

enter or leave the reactor. Recall that a batch reactor can have a jacket surrounding the reaction volume 

or it can have a coiled tube submerged within the fluid in the reactor. If a heating medium (for example 

steam) or a cooling medium (e. g. chilled water) flows within the jacket or coil, heat will move to or from 

the reactor. Even if neither a jacket nor a coil is used, there can still be heat losses to the surroundings, 

unless the reactor is perfectly insulated. We define  
!Q  to be the net heat input to the reactor, including 

both deliberate heat exchange and heat losses. This term would also include energy input from electrical 

heating elements, by radiation, etc.

 
!Q  + GENERATION = OUTPUT + ACCUMULATION
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Energy can also enter or leave the system in the form of mechanical work that is done on or by any 

shafts, moving boundaries, etc. We define  !W  to be the net rate at which mechanical work is done by the 

reactor system on its surroundings through shafts, moving boundaries (including pistons), etc. This 

means that for the very common case of a closed, constant volume tank with an agitator to mix the 

contents, the work term will be negative and equal in magnitude to the rate of energy input by the agitator.

 
!Q  + GENERATION =  !W  + ACCUMULATION

Since we exclude nuclear reactions, there is no way for energy to be generated in the reactor, and 

so the generation term equals zero. You may be thinking that the heat of reaction generates energy, but 
actually it only transforms it from chemical potential energy to heat. As such, the heat of reaction will 
appear momentarily when we consider the accumulation term.

 
!Q  =  !W  + ACCUMULATION

Each species within the reactor possesses energy in various forms (kinetic, potential, internal, etc.). 

If we assume that the reactor is stationary, then overall there is no change in the total kinetic or potential 

energy of the system. There can be accumulation (or depletion) of internal (chemical) energy within the 

system, however. If ûi represents the specific molar internal energy of species i and Δũmix represents the 

mass-specific energy of mixing of the entire solution, then the total internal energy of the system is equal 

to 
 
mtotΔ !umix + niûi

all i
∑ ,  where mtot represents the total mass of the solution in the reaction volume. Here 

we will assume that the reacting solution is an ideal solution (gas phase or liquid phase), in which case 

the first term is equal to zero. The instantaneous accumulation of internal energy is then equal to the 

derivative of the internal energy with respect to time, 
d
dt

niûi
all i
∑⎛⎝⎜

⎞
⎠⎟

, which can then be substituted into the 

energy balance.

 

Q = W +
d
dt

niûi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

This can be rearranged while also noting that 
d
dt

niûi
all i
∑⎛⎝⎜

⎞
⎠⎟
= d

dt
niûi( )

all i
∑ .

 

!Q − !W = d
dt

niûi( )
i=all
species

∑
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Recall from thermodynamics that ûi = ĥi − PV̂i , where ĥi  is the specific molar enthalpy of species 

i, P is the pressure and V̂i  is the specific molar volume of species i.

 

!Q − !W = d
dt

ni ĥi − PV̂i( )( )
i=all
species

∑

The distributive property of multiplication can be applied to the terms within the outer parentheses

 

!Q − !W = d
dt

niĥi − niPV̂i( )
i=all
species

∑

After taking the derivative of the term in parentheses, the resulting summation over two terms can 
be split into two summations, one over each of the terms.

 

!Q − !W = d
dt

niĥii( )− d
dt

niPV̂i( )⎧
⎨
⎩

⎫
⎬
⎭i=all

species

∑ .

 

!Q − !W = d
dt

niĥi( )
i=all
species

∑ − d
dt

niPV̂i( )
i=all
species

∑

According to the chain rule for differentiation, 
d
dt

niĥi( ) = ni dĥidt + ĥi
dni
dt

 and 

d
dt

niPV̂i( ) = niV̂i( ) dPdt + P
d
dt

niV̂i( ) . Then, because the total pressure and its derivative with respect to 

time are each the same in every term in the summations, they can be factored out.

 

!Q − !W = ni
dĥi
dti=all

species

∑ + ĥi
dni
dti=all

species

∑ − dP
dt

niV̂i( )
i=all
species

∑ − P d
dt

niV̂i( )
i=all
species

∑

Next note that 
d
dt

niV̂i( )
i=all
species

∑ = d
dt

niV̂i( )
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

. In addition, niV̂i( )
i=all
species

∑ =V  since the solution 

has been assumed to be ideal.

 

!Q − !W = ni
dĥi
dti=all

species

∑ + ĥi
dni
dti=all

species

∑ − dP
dt
V − P dV

dt

Assuming that no phase changes take place during the reaction, 
dĥi
dt

= Ĉpi
dT
dt

, where Ĉpi  is the 

specific molar heat capacity of species i.
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!Q − !W = niĈpi
dT
dti=all

species

∑ + ĥi
dni
dti=all

species

∑ −V dP
dt

− P dV
dt

Since 
dT
dt

 does has the same value in every term in the summation, it can be factored out.

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ + ĥi
dni
dti=all

species

∑ −V dP
dt

− P dV
dt

The mole balance design equation, equation (17.2) can then be substituted for 
dni
dt

.

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ + ĥi V ν ijrj
j=all

rections

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑ −V dP
dt

− P dV
dt

Again the volume can be factored out of the summation. At the same time, the distributive property 

of multiplication can be applied: ĥi ν i, jr
j=all

reactions

∑ = ν i, j ĥir
j=all

reactions

∑ .

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ +V ν i, j ĥirj( )
j=all

reactions

∑
i=all
species

∑ −V dP
dt

− P dV
dt

The summations can be performed in either order.

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ +V ν i, j ĥirj( )
i=all
species

∑
j=all

reactions

∑ −V dP
dt

− P dV
dt

Since the generalized rate, rj, has the same value in every term in the inner sum, it can be factored 

out.

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ +V rj ν i, j ĥi( )
i=all
species

∑
j=all

reactions

∑ −V dP
dt

− P dV
dt

Finally it can be noted that ν i, j ĥi( )
i=all
species

∑ = ΔH j . The result is the energy balance for a perfectly 

mixed batch reactor, equation (17.3).
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!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ +V rjΔH j( )
j=all

reactions

∑ −V dP
dt

− P dV
dt

 (17.3)

Mole balance (on an arbitrary species i) for an ideal CSTR. An ideal CSTR is quite similar to a 

perfectly mixed batch reactor. The most significant difference is that mass flows into and out of a CSTR, 

and consequently additional terms are present in the mole and energy balances. We begin the derivation 
with the general balance equation.

INPUT + GENERATION = OUTPUT + ACCUMULATION

If the same assumptions are made, the generation term and accumulation terms are the same as 
they were for the perfectly mixed batch reactor.

INPUT + V ν i, jrj
j=all

reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 = OUTPUT + 
dni
dt

As already noted, mass does flow into and out of a CSTR. If ṅi0 and ṅi are respectively defined as 

the inlet and outlet molar flow rates of species i, they become the input and output terms.

 

!ni
0 +V ν i, jrj

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= !ni +

dni
dt

This equation is not very useful because it mixes moles, ni, and molar flow rates, e. g. ṅi. First, by 

definition ni = VCi, where Ci, is the concentration of i in the reaction volume.

 

!ni
0 +V ν i, jrj

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= !ni +

d
dt

VCi( )

The reactor is perfectly mixed, so the concentration of i is the same everywhere within the fluid. 

Since this same fluid is what leaves the reactor, it, too, must have the same concentration. If we assume 

that there is a single fluid stream leaving the reactor, then by definition, 
 
Ci =

!ni
!V

 where  !V  is the total 

volumetric flow rate of the stream leaving the reactor.

   

d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟
= !ni

0 − !ni +V ν i, jrj
j=all

reactions

∑

(Note: the equation above will be used below in deriving the energy balance design equation for an 

ideal CSTR). For present purposes, the chain rule for differentiation can be applied to the derivative: 
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d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟
=
!ni
!V

dV
dt

+ V
!V

d !ni

dt
−
!niV
!V 2

d !V
dt

. Upon substitution, this leads to the final form for the mole 

balance design equation on species i for a CSTR, equation (17.4), which has been rearranged to put the 

derivatives on the left hand side of the equation. One must be careful when using this equation not to 

confuse the reaction volume, V, with the total outlet volumetric flow rate of the fluid,  !V .

   

!ni
!V

dV
dt

+ V
!V

d !ni

dt
−
!niV
!V 2

d !V
dt

= !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑  (17.4)

Energy balance for a CSTR. Once again, we begin with the general balance equation.

INPUT + GENERATION = OUTPUT + ACCUMULATION

As with the batch reactor, there is no energy generated within the reactor since we exclude nuclear 

reactions. The accumulation term is also the same as it was for the batch reactor. This implies the same 
assumption that the reactor is stationary so that its kinetic and potential energies do not change.

INPUT = OUTPUT + 
d
dt

niûi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Making the same assumption of a single fluid stream leaving the reactor, the moles of i can be 

replaced: 
 
ni = CiV =

!niV
!V

.

INPUT = OUTPUT + 

 

d
dt

!niûiV
!Vi=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

As with the batch reactor, one source of heat flow into the system is by heat transfer, and  
!Q  can be 

used to represent this heat flow with the exact same meaning as for the batch reactor. Similarly,  !W  can 

be used to represent the rate of any mechanical work done by the system via moving shafts, etc. Again 

this term is exactly the same as it was for the batch reactor. With a CSTR, there are two additional input 

and two additional output terms. First, every species flowing into the system has an associated internal 

energy, and every species flowing from the system carries an associated internal energy with it. Assuming 

ideal solutions, these terms are simply equal to  !ni
0ûi

0  and  !niûi , and when they are summed for all 

species, they give the total internal energy entering and leaving the reactor. (We assume that the kinetic 

and potential energy terms associated with the inlet and outlet streams are nearly equal to each other and 

consequently cancel each other out. If a stream entered or left the reactor in the form of a high speed jet, 

one would need to include corresponding difference between the inlet and outlet kinetic energy terms.) 
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Finally, in order for the fluid to flow into and out of the reactor, it must do flow work (think of it as pushing 

its way in and out of the reactor) at rates of  P !V 0  and  P !V , respectively.

 

!Q + !ni
0ûi

0( )
i=all
species

∑ + P !V 0 = !W + !niûi( )
i=all
species

∑ + P !V + d
dt

!niûiV
!V

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

This can be rearranged taking note that the derivative of a sum is the sum of the derivatives.

 

!Q − !W = !niûi( )
i=all
species

∑ + P !V − !ni
0ûi

0( )
i=all
species

∑ − P !V 0 + d
dt
!niûiV
!V

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The substitutions that 
 
P !V 0 = !ni

0PV̂i
0

all i
∑  and 

 
P !V = !niPV̂i

all i
∑  can be made.

 

!Q − !W = !niûi( )
i=all
species

∑ + !niPV̂i
i=all
species

∑ − !ni
0ûi

0( )
i=all
species

∑ − !ni
0PV̂i

0

i=all
species

∑ + d
dt
!niûiV
!V

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

Next note that 
 
!niûi( )

all i
∑ + !niPV̂i

all i
∑ = !ni ûi + PV̂i( )

all i
∑  and 

 
− !ni

0ûi
0( )

all i
∑ − !ni

0PV̂i
0

all i
∑ = − !ni

0 ûi
0 + PV̂i

0( )
all i
∑ .

 

!Q − !W = !ni ûi + PV̂i( )
i=all
species

∑ − !ni
0 ûi

0 + PV̂i
0( )

i=all
species

∑ + d
dt
!niûiV
!V

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

Thermodynamic relationships can then be substituted ( ûi + PV̂i = ĥi  and ûi
0 + PV̂i

0 = ĥi
0 ).

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + d
dt

ĥi − PV̂i( ) !niV!V
⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The chain rule can be applied: 
 

d
dt

ĥi − PV̂i( ) !niV!V
⎛
⎝⎜

⎞
⎠⎟ = ĥi − PV̂i( ) ddt

!niV
!V

⎛
⎝⎜

⎞
⎠⎟ +
!niV
!V
d
dt

ĥi − PV̂i( ) .

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + ĥi − PV̂i( ) ddt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

+
!niV
!V
d
dt

ĥi − PV̂i( )⎛
⎝⎜

⎞
⎠⎟i=all

species

∑
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The derivative of the difference can be replaced as follows: 
d
dt

ĥi − PV̂i( ) = dĥidt − d
dt

PV̂i( ) .

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + ĥi − PV̂i( ) ddt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

+
!niV
!V

dĥi
dt

− d
dt

PV̂i( )⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑

The distributive property can then be applied inside each of the sums.

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + ĥi
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − PV̂i
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

+
!niV
!V
dĥi
dt

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ −
!niV
!V
d
dt

PV̂i( )⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The relationship, 
   

d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟
= !ni

0 − !ni +V ν i, jrj
all j
∑ , from the derivation of the mole balance design 

equation can then be substituted into the third term on the right hand side of the equation.

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + ĥi !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑

− PV̂i
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ +
!niV
!V
dĥi
dt

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ −
!niV
!V
d
dt

PV̂i( )⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The same term can be expanded using the distributive property:

 
ĥi !ni

0 − !ni +Vj ν ijrj
all i
∑⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟all i

∑ = ĥi !ni
0( )

all i
∑ − ĥi !ni( )

all i
∑ + ĥiV ν i, jrj( )

all j
∑⎛

⎝⎜
⎞

⎠⎟all i
∑

 

!Q − !W = !ni ĥi( )
i=all
species

∑ − !ni
0 ĥi

0( )
i=all
species

∑ + ĥi !ni
0( )

i=all
species

∑ − ĥi !ni( )
i=all
species

∑ + ĥiV ν i, jrj( )
j=all

reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑

− PV̂i
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ +
!niV
!V
dĥi
dt

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ −
!niV
!V
d
dt

PV̂i( )⎛
⎝⎜

⎞
⎠⎟i=all

species

∑
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The first and fourth sums on the right hand side cancel each other out. The second and third sums 

on the right hand side can be combined: 
 
− !ni

0 ĥi
0( )

all i
∑ + ĥi !ni

0( )
all i
∑ = !ni

0 ĥi − ĥi
0( )( )

all i
∑ . Since V has the 

same value in every term in the fifth sum, it can be factored out, and ĥi  can be moved inside the inner 

sum. If we assume no phase changes take place, 
dĥi
dt

= Ĉpi
dT
dt

. The chain rule can be used in the last 

term, 
d
dt

PV̂i( ) = P d
dt

V̂i( ) + V̂i ddt P( ) .

 

!Q − !W = !ni
0 ĥi − ĥi

0( )( )
i=all
species

∑ +V ν i, j ĥirj( )
j=all

reactions

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑ − PV̂i
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

+
!niVĈpi

!V
dT
dt

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ −
!niVP
!V

dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ −
!niVV̂i
!V

dP
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

Many of the sums include quantities that have the same value in every term in the sum; (in one 

case after changing the order of the sums) these can be factored out, and the terms can be re-ordered.

 

!Q − !W = !ni
0 ĥi − ĥi

0( )( )
i=all
species

∑ +V rj ν i, j ĥi( )
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑

−V!V
dP
dt

⎛
⎝⎜

⎞
⎠⎟

!niV̂i( )
i=all
species

∑ − PV!V
!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − P V̂i
d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

If we assume there are no phase changes within the reactor, the enthalpy difference in the first term 

on the right side of the equation can be written as ĥi − ĥi
0 = Ĉpi dT

T 0

T

∫ . The inner sum of the second term 

is, by definition, ν i, j ĥi( )
all i
∑ = ΔH j T

. As before, the sum in the fourth term on the right side is 

 
!V = !niV̂i

all i
∑ . The chain rule can be used for the derivative in the last term, 

 

d
dt
!niV
!V

⎛
⎝⎜

⎞
⎠⎟ =

V
!V
d !ni
dt

+
!ni
!V
dV
dt

−
!niV
!V 2

d !V
dt

.
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!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑

−V!V
dP
dt

⎛
⎝⎜

⎞
⎠⎟
!V − PV!V

!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − P V̂i
V
!V
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

−P V̂i
!ni
!V
dV
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ + P V̂i
!niV
!V 2

d !V
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The volumetric flow rate can be canceled from the term in blue above. Also, it can be factored 

outside the summation, along with the derivative, 
dV
dt

, from the term in red. After doing this, the 

summation that remains is 
 
!niV̂i

all i
∑ = !V . This will leave a volumetric flow rate in the numerator and in the 

denominator, which will cancel. These changes can be made and the equation can be rearranged.

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑ −V dP
dt

⎛
⎝⎜

⎞
⎠⎟

−P dV
dt

− PV!V
!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − P V̂i
V
!V
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ + P V̂i
!niV
!V 2

d !V
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The terms whose values are the same in every term can be factored out of the final two terms.

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑ −V dP
dt

⎛
⎝⎜

⎞
⎠⎟

−P dV
dt

− PV!V
!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ + V̂i
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − 1!V
d !V
dt

!niV̂i( )
i=all
species

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The final sum can be replaced, 
 
!niV̂i

all i
∑ = !V , and this will leave a volumetric flow rate in the 

numerator and in the denominator that will cancel.

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑ −V dP
dt

⎛
⎝⎜

⎞
⎠⎟

−P dV
dt

− PV!V
!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ + V̂i
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − d
!V

dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Next the last derivative can be replaced by first noting that since 
 
!V = !niV̂i

all i
∑ , then by the chain 

rule, 
 

d !V
dt

= !ni
dV̂i
dtall i

∑ + V̂i
d !ni
dtall i

∑ . 

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑ + V!V
dT
dt

⎛
⎝⎜

⎞
⎠⎟

!niĈpi( )
i=all
species

∑

−V dP
dt

⎛
⎝⎜

⎞
⎠⎟ − P

dV
dt

− PV!V
!ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ + V̂i
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − !ni
dV̂i
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑ − V̂i
d !ni
dt

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Following the substitution, the four terms in the square brackets cancel each other out and the 

entire term goes to zero. Specifically, adding the two terms in red gives zero as does adding the two 
terms in blue. This finally gives the energy balance equation for an ideal CSTR, equation (17.5).

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑

+V!V
!niĈpi( )

i=all
species

∑ dT
dt

⎛
⎝⎜

⎞
⎠⎟ −V

dP
dt

⎛
⎝⎜

⎞
⎠⎟ − P

dV
dt

⎛
⎝⎜

⎞
⎠⎟

 (17.5) 

Mole balance (on an arbitrary species i) for an ideal PFR. Unlike the perfectly mixed batch 

reactor and the CSTR, the composition in an ideal PFR is not uniform. As a consequence, it becomes 
necessary to write the mole and energy balance equations on a differential element of reactor volume and 

then take the limit as the size of this element goes to zero. Here, we will assume that the reactor is 

cylindrical with a constant diameter, D, and a length, L. Figure 1 shows such a reactor, highlighting a 

differentially thick cross section that will be used in formulating the mass and energy balances for the 

ideal PFR.

D

dz

L

ṅi
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Figure 1 Volume element used in deriving the ideal PFR design equations.

Recall that in a PFR, it is assumed that there is perfect mixing in the radial direction and no mixing 

in the axial direction. With these assumptions, the environmental variables will be uniform throughout the 
entire differential element shown in Figure 1 (or, put differently, the differential element shown in Figure 1 

is perfectly mixed). The derivation of the mole balance on an arbitrary species i begins with the balance 

equation, applied to the differential element.

INPUT + GENERATION = OUTPUT + ACCUMULATION

The input and output terms are simply the molar flow rate, evaluated at the “front” and “back” of the 

differential element.

 
!ni z  + GENERATION = 

 
!ni z+dz  + ACCUMULATION

If we assume that there is a single fluid within the reactor in which all reactions take place, then the 

total rate of generation of species per unit fluid volume is equal to ν i, jrj
all j
∑ . The differential element is 

perfectly mixed, and therefore the rate is the same anywhere within its volume. Therefore, the total 

generation of moles of species i  within the element is equal to the volume of the differential element 

times the total rate per volume, 
πD2 dz( )

4
ν i, jrj

all j
∑ , where we have further assumed that every reaction 

rate has been normalized per unit fluid volume.

 
!ni z  + 

πD2 dz( )
4

ν i, jrj
j=all

reactions

∑  = 
 
!ni z+dz  + ACCUMULATION

The instantaneous accumulation of moles of i is equal to 
dni
dt

, where ni represents the number of 

moles in the differential element. Since the differential element is perfectly mixed, the total moles of i in 

the differential element is equal to the concentration of i in the differential element times the volume of the 

differential element. In a flowing system, the concentration of i is equal to the molar flow rate of i divided 

by the volumetric flow rate, just as it was for the CSTR.

 

!ni z +
πD2 dz( )

4
ν i, jrj

j=all
reactions

∑ = !ni z+dz +
∂
∂t

πD2 dz( )
4

!ni z
!V

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

This equation can be rearranged and the constant terms can be factored from the partial derivative.

 

!ni z+dz − !ni z
dz

= πD2

4
ν i, jrj

j=all
reactions

∑ − πD2

4
∂
∂t
!ni z
!V

⎛

⎝⎜
⎞

⎠⎟
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In the limit of an infinitesimally thin volume element, 

 

lim
dz→0

!ni z+dz − !ni z
dz

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂ !ni

∂z
.

 

∂ !ni
∂z

= πD2

4
ν i, jrj

j=all
reactions

∑ − πD2

4
∂
∂t
!ni
!V

⎛
⎝⎜

⎞
⎠⎟

Finally, using the chain rule to differentiate the partial derivative on the right leads to the mole 

balance design equation for an ideal PFR, equation (17.6).

 

∂ !ni
∂z

= πD2

4
ν i, jrj

j=all
reactions

∑ − πD2

4 !V
∂ !ni
∂t

+ πD2 !ni
4 !V 2

∂ !V
∂t

 (17.6)

Energy balance for a PFR. Once again, we begin with the general balance equation.

INPUT + GENERATION = OUTPUT + ACCUMULATION

As with the batch reactor and the CSTR, energy is not generated in the PFR since we exclude 

nuclear reactions. Since we have assumed a tubular reactor of fixed diameter, there are no shafts or 

moving boundaries, and consequently the PFR does not do any work on the surroundings (there is no  !W  

term). Heat can flow into the reactor through the reactor wall. We assume that this heat transfer can be 

described using an overall heat transfer coefficient, U. If we let Te denote the temperature exterior to the 

reactor and let T denote the temperature within the reactor, then the heat input through the wall is equal 

to the wall area times the heat transfer coefficient times the temperature difference. Applying this to the 

differential volume element gives  
!Q = πD dz( )U Te −T( ) . As with the CSTR, the fluid flowing into and 

out of the volume element carries internal energy with it and it must do flow work as it enters and leaves. 

These substitutions can be made for the input, output and generation terms.

 

!niûi( )
z

i=all
species

∑ + P !V
z
+πD dz( )U Te −T( ) = !niûi( )

z+dz
i=all
species

∑ + P !V
z+dz

 + ACCUMULATION

The instantaneous accumulation of energy equals the instantaneous accumulation of moles of each 

species (see the mole balance above) times its specific internal energy. Once again, we assume the 
reactor is stationary and that the total kinetic energy and potential energy of the flowing fluid remains 

constant.
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!niûi( )
z

i=all
species

∑ + P !V
z
+πD dz( )U Te −T( ) = !niûi( )

z+dz
i=all
species

∑ + P !V
z+dz

+ ∂
∂t

πD2 dz( )
4

!niûi
!V

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

Assuming an ideal solution, the volumetric flow rate can be related to the molar specific volumes, 

 
!V = !niV̂i

all i
∑ , and the internal energy can be related to the specific enthalpy (ûi + PV̂i = ĥi ) in a manner 

exactly analogous to the CSTR .

 

!niĥi( )
zi=all

species

∑ +πD dz( )U Te −T( ) = !niĥi( )
z+dzi=all

species

∑ +
πD2 dz( )

4
∂
∂t
!ni
!V
ĥi − PV̂i( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑

The equation can then be rearranged.

 

!niĥi( )
z+dz

− !niĥi( )
z

dzi=all
species

∑ = πDU Te −T( )− πD2

4
∂
∂t
!ni
!V
ĥi − PV̂i( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑

For a differentially thin volume element, 

 

lim
dz→0

!niĥi( )
z+dz

− !niĥi( )
z

dzall i
∑

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= ∂

∂z
!niĥi( )⎛

⎝⎜
⎞
⎠⎟all i

∑ .

 

∂
∂z
!niĥi( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑ = πDU Te −T( )− πD2

4
∂
∂t
!ni
!V
ĥi − PV̂i( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑

This equation can be rearranged, combining all the sums.

 

πDU Te −T( ) = ∂
∂z
!niĥi( ) + πD2

4
∂
∂t
!ni
!V
ĥi − PV̂i( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑

The derivatives inside the sum can be expanded.

 

πDU Te −T( ) = ĥi
∂ !ni
∂z

+ !ni
∂ĥi
∂z

+ πD2

4
∂
∂t
!niĥi
!V

⎛

⎝⎜
⎞

⎠⎟
− πD2

4
∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

i=all
species

∑

If we assume no phase changes take place, then the term in blue is equal to 
 
!niĈpi

∂T
∂z

.
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πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ ĥi
∂ !ni
∂z

+ πD2

4
∂
∂t
!niĥi
!V

⎛

⎝⎜
⎞

⎠⎟
− πD2

4
∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

i=all
species

∑

The chain rule can next be applied to the term in red.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ ĥi
∂ !ni
∂z

+ πD2

4
∂
∂t
!ni
!V

⎛
⎝⎜

⎞
⎠⎟
+ πD2

4
!ni
!V
∂ĥi
∂t

− ∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

i=all
species

∑

The mole balance, equation (17.6), can be rearranged as follows:

 

∂ !ni
∂z

+ πD2

4 !V
∂ !ni
∂t

− πD2 !ni
4 !V 2

∂ !V
∂t

= ∂ !ni
∂z

+ πD2

4
∂
∂t
!ni
!V
= πD2

4
ν i, jrj

all j
∑ , and substituted for the term in blue.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ ĥi
πD2

4
ν i, jrj

j=all
reactions

∑ + πD2

4
!ni
!V
∂ĥi
∂t

− ∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟i=all

species

∑

This equation can be rearranged, separating the terms of the sum, changing the order of the nested 
sums, and factoring constants outside the summations.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!ni
∂ĥi
∂t

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑

−πD
2

4
∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑

As above, 
∂ĥi
∂z

= Ĉpi
∂T
∂z

.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2

4
∂
∂t
!niPV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑

The chain rule can be applied to the final term.
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πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

∂
∂t
!niV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ − πD2

4
!niV̂i
!V

∂P
∂t

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑

The terms that do not depend upon the index i can be factored outside the final sum, which leaves 

 
!niV̂i

all i
∑ = !V . The resultant volumetric flow rate appears in the numerator and denominator, and so it can 

be canceled.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

∂
∂t
!niV̂i
!V

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ − πD2

4
∂P
∂t

Next the chain rule is applied to the term in blue.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

1
!V
∂
∂t
!niV̂i( )⎛

⎝⎜
⎞
⎠⎟ −

!niV̂i
!V 2

∂ !V
∂t

⎛
⎝⎜

⎞
⎠⎟i=all

species

∑
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− πD2

4
∂P
∂t

The terms that do not depend upon the index i can be factored outside the second blue sum.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

1
!V
∂
∂t
!niV̂i( )⎛

⎝⎜
⎞
⎠⎟ −

1
!V 2

∂ !V
∂t

!niV̂i( )
i=all
species

∑
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− πD2

4
∂P
∂t

The resulting sum in red is just equal to the volumetric flow rate, 
 
!niV̂i

all i
∑ = !V , which allows 

additional simplification.
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πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

1
!V
∂
∂t
!niV̂i( )⎛

⎝⎜
⎞
⎠⎟ −

1
!V
∂ !V
∂ti=all

species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− πD2

4
∂P
∂t

Noting that since 
 
!V = !niV̂i

all i
∑ , then 

 

∂ !V
∂t

= ∂
∂t
!niV̂i( )

all i
∑ , and substitution in the term in blue shows 

that it cancels the one preceding it.

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rj ν i, j ĥi

i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟j=all

reactions

∑ + πD2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD
2P
4

1
!V
∂
∂t
!niV̂i( )⎛

⎝⎜
⎞
⎠⎟ −

1
!V
∂
∂t
!niV̂i( )⎛

⎝⎜
⎞
⎠⎟i=all

species

∑
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
− πD2

4
∂P
∂t

Noting that the summation in blue above is just the heat of reaction, this, finally, gives the energy 

balance equation for an ideal PFR, equation (17.7).

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rjΔH j( )

j=all
reactions

∑

+ πD
2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD2

4
∂P
∂t

 (17.7)

Mechanical energy balance for an ideal PFR. A third type of balance equation is often needed 

when modeling plug flow reactors, particularly packed bed catalytic reactors. The flow of a fluid through a 
tube, particularly one packed with solid particles, requires that some of the flow energy must be expended 

to overcome friction between the flowing fluid and the stationary solid (reactor walls and packing, if 
present). The net result is a drop in pressure along the length of the tube. Chemical engineers typically 

use a mechanical energy balance to model this pressure drop. The complexity of the processes involved 
is such that these models are usually empirical in nature and include parameters such as the friction 

factor. This topic is normally covered in chemical engineering courses on unit operations. No attempt will 
be made here to derive the mechanical energy balance equations. However, in the next section two 

common steady-state forms of the mechanical energy balance will be presented without derivation.
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Summary and steady-state forms of the balance equations. In deriving the design equations for 
a perfectly mixed batch reactor, the following assumptions were made:

• the reactor is perfectly mixed
• no mass enters or leaves the reactor during the reaction
• there is a single fluid volume in which all reactions take place
• the reacting fluid is an ideal solution (gas or liquid)
• every reaction rate has been normalized per unit fluid volume
• the reactor is stationary
• no phase changes occur during the reaction

With these assumptions for a perfectly mixed batch reactor, the resulting mole balance is equation 

(17.2) and the energy balance is equation (17.3).

dni
dt

=V ν i, jrj
j=all

reactions

∑  (17.2)

 

!Q − !W = dT
dt

niĈpi( )
i=all
species

∑ +V rjΔH j( )
j=all

reactions

∑ − dP
dt
V − P dV

dt
 (17.3)

It is sometimes helpful to assign physical significance to the terms appearing in these equations. 

The mole balance is trivial in this regard, the left side of the equation is the accumulation of species i in 

the reactor and the right side is the net generation of species i by chemical reaction. In the energy 

balance, the two terms on the left side are the exchange of energy with the surroundings, either as heat 

or as work. The first term on the right is the change in sensible heat within the reactor, the second term is 
the heat absorbed by chemical reaction, and the last two terms are work the fluid must do in expanding or 

contracting.
The assumptions used in deriving the design equations for a CSTR were as follows:

• perfect mixing
• every reaction rate has been normalized per unit fluid volume
• the reacting fluid is an ideal solution (gas or liquid)
• there is a single fluid stream leaving the reactor
• the reactor is stationary
• no phase changes occur during the reaction
• the kinetic and potential energy of the entering and exiting fluid streams are effectively equal to 

each other

With these assumptions for an ideal CSTR, the resulting mole balance is equation (17.4) and the 

energy balance is equation (17.5).

   

0 = !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑  (17.4)

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑  (17.5)
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If an ideal CSTR operates at steady state, these equations simplify considerably. Specifically, at 
steady state all the derivatives with respect to time vanish. Thus, equations (17.8) and (19.9) represent 

the ideal, steady-state CSTR mole and energy balances, respectively.

   

0 = !ni
0 − !ni +V ν i, jrj

j=all
reactions

∑  (17.8)

 

!Q − !W = !ni
0 Ĉpi dT
T 0

T

∫
⎛

⎝⎜
⎞

⎠⎟i=all
species

∑ +V rjΔH j T( )
j=all

reactions

∑  (17.9)

As with the batch reactor, the two terms on the left side of the steady state energy balance are the 
exchange of energy with the surroundings, either as heat or as work. The first term on the right is the 

change in sensible heat within the reactor, and the second term is the heat absorbed by chemical 
reaction.

The assumptions used in deriving the design equations for a PFR were as follows:
• plug flow (perfect radial mixing and no axial mixing)
• cylindrical reactor with a constant diameter
• every reaction rate has been normalized per unit fluid volume
• the reacting fluid is an ideal solution (gas or liquid)
• there is a single fluid stream leaving the reactor
• the reactor is stationary
• no phase changes occur during the reaction
• heat transfer with the surrounding can be described using an overall heat transfer coefficient
• no shafts or moving boundaries
• the kinetic and potential energy of the entering and exiting fluid streams are effectively equal to 

each other

With these assumptions for an ideal PFR, the resulting mole balance is equation (17.6) and the 
energy balance is equation (17.7).

 

∂ !ni
∂z

= πD2

4
ν i, jrj

j=all
reactions

∑ − πD2

4 !V
∂ !ni
∂t

+ πD2 !ni
4 !V 2

∂ !V
∂t

 (17.6)

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rjΔH j( )

j=all
reactions

∑

+ πD
2

4 !V
!niĈpi( )

i=all
species

∑ ∂T
∂t

− πD2

4
∂P
∂t

 (17.7)

If an ideal PFR operates at steady state, these equations simplify considerably; equations (17.10) 
and (17.11) represent the ideal, steady-state PFR mole and energy balances, respectively. As with the 

CSTR, these equations result from setting all of the derivatives with respect to time equal to zero.
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∂ !ni
∂z

= πD2

4
ν i, jrj

j=all
reactions

∑  (17.10)

 

πDU Te −T( ) = !niĈpi
i=all
species

∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
∂T
∂z

+ πD2

4
rjΔH j( )

j=all
reactions

∑  (17.11)

Here, the term on the left side of the steady state energy balance represents exchange of energy 

with the surroundings as heat. The first term on the right is the change in sensible heat of the reacting 
fluid, and the second term is the heat absorbed by chemical reaction.

It was noted above that a mechanical energy balance must be used to model pressure drop. 
Equation (17.12) is the mechanical energy balance for an unpacked tubular reactor and equation (17.13) 

is the mechanical energy balance (Ergun equation) for a packed bed tubular reactor. In these equations G 

represents the mass flow divided by the cross sectional area of the tube, gc is a gravitational constant (not 

the acceleration due to gravity), f is the friction factor, ρ is the fluid density, ε is the void fraction of the 

packed bed, Φs is the “sphericity” of the bed packing, Dp is the diameter of the bed packing particles, and 

µ is the fluid viscosity.

   

∂ P
∂ z

= − G
gc

4
πD2

⎛
⎝⎜

⎞
⎠⎟
∂ !V
∂ z

− 2 fG2

ρD
 (17.12)

  

∂ P
∂ z

= −1− ε
ε 3

G2

ρΦsDpgc

150 1− ε( )µ
ΦsDpG

+1.75
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (17.13)

Typical kinetic behavior and classification of reactions. Reaction thermodynamics allows one 

to calculate the heat, ΔH, of a chemical reaction at any set of environmental conditions. If the heat of 

reaction is negative (heat is released by the reaction), the reaction is called an exothermic reaction, and if 
the heat of reaction is positive (heat is absorbed by the reaction), the reaction is called an endothermic 

reaction. To a first approximation, the heat of reaction determines how the equilibrium constant varies with 

temperature. Recall from Unit 2 that by definition, the equilibrium constant for a reaction, j, depends upon 

the entropy and enthalpy changes for that reaction as given in equation (17.14). If the heat and entropy 

changes are taken to be constant, the dependence of the equilibrium constant upon temperature can be 
expressed as in equation (17.15), which can be seen to be of the same form as the Arrhenius equation for 

the temperature dependence of a rate coefficient. One significant difference is that the activation energy 

in the Arrhenius equation is a positive number whereas ΔHj can be either positive or negative.

K j = exp
−ΔGj

RT
⎧
⎨
⎩

⎫
⎬
⎭
= exp

ΔSj
R

⎧
⎨
⎩

⎫
⎬
⎭
exp

−ΔH j

RT
⎧
⎨
⎩

⎫
⎬
⎭

 (17.14)
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K j = K0, j exp
−ΔH j

RT
⎧
⎨
⎩

⎫
⎬
⎭

 (17.15)

Rate expressions are typically comprised of concentration terms, one or more rate coefficients, and 
sometimes one or more equilibrium constants. Quite commonly, the rate coefficients are taken to obey the 

Arrhenius equation and the equilibrium constants can be modeled using equation (17.15). We have seen 

that rate expressions can assume wide variety of mathematical forms. Nonetheless, there are some 
generalizations that can be made and that are found to be true for a majority of reactions. The following is 
a short list of generalizations about reactions and their rates.

• Typically, the rate of a chemical reaction will increase if the temperature of the reacting system is 
increased.

• Typically, the rate of a chemical reaction will decrease if the concentration of the reactants 

decreases.

• Typically, the rate of an irreversible chemical reaction is not strongly affected by the concentration 
of the products.

• Typically, the rate of a reversible chemical reaction decreases as the concentration of the 

products increases.

• The equilibrium constant for an exothermic reaction will decrease as the temperature increases.
• The equilibrium constant for an endothermic reaction will increase as the temperature increases.

Again, there are a multitude of rate expressions for chemical reactions, and the statements above 

are commonly, but not always, true. At this point, several hypothetical chemical reactions will be used, 
along with corresponding hypothetical rate expressions, to illustrate these generalizations. While the 
reactions and the rate expressions to be used here are made up, one could find real chemical systems 

that behave similarly. 

Consider first an irreversible reaction, using equation (17.16) as the hypothetical reaction and 
equation (17.17) as the hypothetical rate expression.

A + B → Y + Z (17.16)

r17.16 = k0,17.16 exp
−E17.16
RT

⎧
⎨
⎩

⎫
⎬
⎭
CACB  (17.17)

Supposing this to be a liquid phase reaction that occurs at temperatures near ambient, reasonable 

values for the rate expression parameters might be k0,17.16 = 1 x 108 L mol−1 min−1 and E 17.16 = 50 kJ 

mol−1. The first generalization above suggested that increasing the temperature would increase the rate. 

In equation (17.17), there is only one term that contains the temperature, namely the exponential term. It 

is easy to show that increasing T increases this term and consequently increases the rate. For example, 

at 298 K, the exponential term has a value of 1.72 x 10−9. Increasing the temperature to 313 K increases 

the exponential term to a value of 4.53 x 10−9. The second generalization suggests that as the 
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concentration of a reactant decreases, the rate will decrease. This is easily seen in equation (17.17) 

because the rate is directly proportional to the concentration of each reactant, and so decreasing CA and/

or CB will decrease the rate proportionately. The third generalization indicates that the rate of an 

irreversible reaction is not strongly affected by the concentrations of the products. Here it can be seen 

that neither CY nor CZ appear in the rate expression, so obviously changing either of their values would 

not affect the rate at all for this irreversible reaction.
Next consider a reversible reaction, using equation (17.18) as the hypothetical reaction and 

equation (17.19) as the hypothetical rate expression.

A + B ⇄ Y + Z (17.18)

r17.18 = k17.18 exp
−E17.18
RT

⎧
⎨
⎩

⎫
⎬
⎭
CACB 1−

CYCZ

K0,17.18 exp
−ΔH17.18

RT{ }CACB

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (17.19)

The fourth generalization suggests that for reversible reactions, the rate decreases as the product 

concentration increases. The rate expression, equation (17.19), involves the difference between two 

terms (inside the square brackets). The quantity being subtracted can be seen to be proportional to CY 
and CZ. Hence, increasing either CY or CZ causes a larger quantity to be subtracted and therefore leads to 

a smaller rate.
It is simple to illustrate the last two generalizations. As an example, consider the equilibrium 

constant appearing in the denominator in equation (17.19). Supposing that the equilibrium constant has a 

value of 0.65 at 298 K and that the (exothermic) heat of reaction is equal to −200 kJ mol−1, it would be 

found that increasing the temperature to 313 K would decrease the equilibrium constant for this 
exothermic reaction to 0.014. This is consistent with the fifth generalization above. Similarly, if the 
equilibrium constant had a value of 0.65 at 298 K and the reaction was endothermic with a heat of 

reaction equal to +200 kJ mol−1, increasing the temperature of the endothermic reaction to 313 K would 

increase the equilibrium constant to 31.1, consistent with the sixth generalization.
Examining equation (17.19) more closely shows that for an exothermic reaction there is a bit of a 

trade-off with respect to temperature. Far from equilibrium, where the 1 inside the square brackets is 

much, much greater than the second term, a higher temperature means that the rate coefficient will be 

larger, and consequently the rate of reaction will be greater. However, as the temperature is increased, 
the second term inside the square brackets also becomes greater. With continued increase in 
temperature, eventually the second term inside the square brackets becomes significant relative to the 1. 

Further increases in temperature beyond this point still increase the rate coefficient (tending to increase 

the rate), but they simultaneously increase the second term inside the square brackets (tending to 
decrease the rate). Eventually the second effect will come to predominate and the rate will decrease to 
zero as the temperature increases. Put differently, as the temperature increases with an exothermic 

reaction, the equilibrium conversion becomes smaller and consequently the rate goes to zero at larger 
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reactant concentrations. As a result, the reaction will not proceed as far as it would at a lower 
temperature. In contrast, an endothermic reaction is favored by high temperature. In an endothermic 

reaction a higher temperature means both a larger rate coefficient (faster rate) and a larger equilibrium 
coefficient (greater conversion).

An auto-thermal reaction (or system of reactions) is a special case of an exothermic reaction 
system. Actually it is probably more accurate to speak of running a reaction auto-thermally than to say the 

reaction itself is auto-thermal, but the latter usage is commonly encountered. The distinguishing feature of 

an auto-thermal reaction is that the heat released by the reaction (−ΔH) is sufficient to raise the 

temperature of the fresh reactants to a point where the reaction will proceed spontaneously without the 

addition of heat from any external source. Many industrial reactions take place at elevated temperatures, 
and consequently it is necessary to heat the reactants up to the reaction temperature before feeding them 

into the reactor. For most reactions, this means the reactants must pass through a heat exchanger and 
steam or some other heating medium must be used to raise their temperature. In the case of an auto-

thermal exothermic reaction, it would not be necessary to use any steam or other heating source. Instead, 
the heat released by the reaction could (with appropriate system engineering) be transferred to the 

reactants and provide all the heat necessary to heat those reactants to the inlet reactor temperature.
The reaction classifications mentioned so far have all been related to the thermodynamic behavior 

of the reacting system, and the behavior that has been discussed pertains to “typical” kinetic behavior. In 
some cases reaction rates are not affected by changes in reactant or product composition as is typically 

expected. That is, the rates of some reactions do not obey the generalizations with respect to 
concentration that were given earlier. This represents another basis for classifying reactions. Examples 

are auto-catalytic reactions, product inhibited reactions and reactant inhibited reactions.
In an auto-catalytic reaction, the rate of reaction increases as the concentration of a product 

increases (contrary to point 3 or 4 above). This doesn’t necessarily occur across the full composition 
spectrum, but for an auto-catalytic reaction there is some range of composition within which an increase 

in product concentration causes an increase in rate. A very good example of an auto-catalytic process is 
that of cell growth. If a very simple cell growth process takes place with a yield factor of 0.5, then the cell 

growth “reaction” can be written as in equation (17.20), where X is used to denote cell mass 
concentration and S is used to denote substrate (i. e. nutrients or “food”) mass concentration. If the 

Monod equation describes this particular cell growth reaction, then the corresponding rate expression is 

given in equation (17.21) where the C’s represent mass concentrations, µmax is a constant (for a given 

reaction temperature) representing the maximum specific growth rate and Ks is a second constant (the 

saturation constant). Typical values of the constants in equation (17.21) might be µmax = 1.0 h−1 and Ks = 

0.2 g L−1. Noting that cell mass is the “product” of reaction (17.20), it is easy to see that the reaction is 

auto-catalytic. If you had a system of pure substrate, no cells would ever grow. The system needs at least 
one cell initially to metabolize the substrate and eventually divide into two cells. If more cells are present, 

then the growth will be more rapid because each cell can be metabolizing the substrate and dividing into 
two cells at the same time. The choice of the name “auto-catalytic” for reactions like this is unfortunate, 
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though, because the reaction need not involve a catalyst. Also, while the example given here involves a 
biological process, chemical reactions can also be found that are auto-catalytic.

2 S → X (17.20)

r17.20 =
µmaxCXCS

Ks +CS

 (17.21)

Another behavior that is not consistent with the generalizations above is the product inhibited 
reaction. A hypothetical example can be constructed again using irreversible reaction (17.16). Generally 

one would not expect an irreversible reaction to be affected significantly by increasing the product 

concentration, as long as the reactant concentration remained the same. (This would also be true of a 
reversible reaction that was very far from reaching equilibrium.) However, if the rate expression for the 
irreversible reaction (16.16) was like that given in equation (17.22), this generalization would not be 

obeyed, and the reaction would be called a product inhibited reaction. Supposing that the values of k17.16 

and ′k17.16  were 0.17 L mol−1 s-1 and 8.61 L mol−1, respectively, the rate in an equimolar mixture of A and B 

(1 M each) would be 0.17 mol L−1 s-1, but if the product Y was also present at a 1 M concentration, the 

rate would decrease by a factor of almost 10 (to 0.018 mol L−1 s-1), even though the reaction is 
irreversible and the amounts of A and B had not changed.

r17.16 =
k17.16CACB

1+ ′k17.16CY

 (17.22)

Some heterogeneous catalytic and other reactions are reactant inhibited reactions. Normally, one 
expects that the rate of reaction will increase if the concentration of reactant is increased (point 2 above), 

but for a reactant inhibited reaction, the rate of reaction decreases when the concentration of a reactant is 
increased. A hypothetical example of this behavior might again involve reaction (17.16), but with the 

kinetics shown in equation (17.23). (The difference between equations (17.22) and (17.23) is the identity 
of the species whose concentration appears in the denominator, Y versus B, and the power to which that 

concentration is raised, 1 versus 2.) If k17.16 and ′k17.16  have the same numerical values as given above, 

then the rate in an equimolar mixture of A and B at 1 M concentration each would be 0.018 mol L−1 s−1. If 

the concentration of B was doubled (CA = 1 M and CB = 2 M), the rate would decrease to 0.0096 

mol L−1 s-1.

r17.16 =
k17.16CACB

1+ ′k17.16CB
2  (17.23)

To this point in the present discussion, only single chemical reactions have been considered. It is 
very, very common for more than one reaction to be taking place in an industrial reactor. Sometimes the 

reactants and products involved in each reaction are different from the reactants and products involved in 
all the other reactions. In this case the reaction system is said to involve an independent set of reactions. 

In other cases, a reactant or product in one reaction is also involved in other reactions. There are many 
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possible combinations of reactions, but there are three common combinations that are often used in the 
classification of reaction networks.

If the product of one reaction in a reaction network is the reactant for a subsequent reaction, the 
reaction network is called a series reaction network.  Reactions (17.24) and (17.25) schematically 

represent a series reaction network. For series reactions, such as those given in reactions (17.24) and 
(17.25), species that are formed in one reaction and consumed in a subsequent reaction are sometimes 

called intermediate products or intermediate species or just intermediates (not to be confused with the 
reactive intermediates that appear in reaction mechanisms; here the intermediates are not necessarily 

highly reactive species). The species names D and U appearing in reactions (17.24) and (17.25) are not 
arbitrary. It frequently occurs that the intermediate product is the desired (hence represented as D) 

species that has a high value whereas the final product is undesired (hence U) and has lower value. The 
number of reactions and intermediates is not limited to two, as illustrated schematically in equation 

(17.26). 

A → D (17.24)

D → U (17.25)

A → B → C → D → …. (17.26)

A second classification of reaction networks is the parallel reaction network which is distinguished 

by having one species serving as the reactant in two or more of the reactions taking place. This is 
hypothetically illustrated, for two reactions, in equations (17.27) and (17.28), but this should not be taken 

to mean the number of parallel reactions is limited to two. In these reactions species A is a reactant in 
both reactions, and so they are parallel reactions. Once again, it is not uncommon for one product to be 

the desired product and another to be an undesired product.

A → D (17.27)

A → U (17.28)

A series-parallel reaction network is a combination of a series network and a parallel network. 

Reactions (17.29) and (17.30) hypothetically illustrate a series-parallel reaction network. From the 
perspective of one species in the network (B in the reactions used here) the reactions appear to be 

parallel reactions, while from the perspective of a different species (Y in the reactions used here) the 
reactions appear to be series reactions.

A + B → Y (17.29)

Y + B → Z (17.30)

Finally, it is worth pointing out that in some cases, the number of reactions in a system can become 
so great that it is effectively impossible to write every one of them down and treat them explicitly. An 

example is polymerization where a single reactant might form millions of slightly different products. 
Fortunately, in these cases it is often possible to analyze the associated kinetics and reactors by lumping 

products into groups and using an effective stoichiometry to represent the whole group of reactions. Also, 
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in such situations, one often limits the analysis of the reactor to consider only the consumption of the 
reactant without worrying about which of the millions of products it became a part of.

Hypothetical reactions have been introduced in this unit, in part, for the purpose of illustrating some 
generalizations about kinetic behavior as well as some cases where the generalizations fail. It is useful for 

an engineer to develop a qualitative “feel” for how different kinds of reactors perform and to tie that “feel” 
to its underlying physical origins. This kind of understanding helps when the engineer is called upon to 

select which type of reactor to use in a new process and how to operate that reactor. This will be 
illustrated in future units.
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